Cargando…

Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28

Yhc1 and U1C are homologous essential subunits of the yeast and human U1 snRNP, respectively, that are implicated in the establishment and stability of the complex of U1 bound to the pre-mRNA 5′ splice site (5′SS). Here, we conducted a mutational analysis of Yhc1, guided by the U1C NMR structure and...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwer, Beate, Shuman, Stewart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985668/
https://www.ncbi.nlm.nih.gov/pubmed/24497193
http://dx.doi.org/10.1093/nar/gku097
_version_ 1782311607387291648
author Schwer, Beate
Shuman, Stewart
author_facet Schwer, Beate
Shuman, Stewart
author_sort Schwer, Beate
collection PubMed
description Yhc1 and U1C are homologous essential subunits of the yeast and human U1 snRNP, respectively, that are implicated in the establishment and stability of the complex of U1 bound to the pre-mRNA 5′ splice site (5′SS). Here, we conducted a mutational analysis of Yhc1, guided by the U1C NMR structure and low-resolution crystal structure of human U1 snRNP. The N-terminal 170-amino acid segment of the 231-amino acid Yhc1 polypeptide sufficed for vegetative growth. Although changing the zinc-binding residue Cys6 to alanine was lethal, alanines at zinc-binding residues Cys9, His24 and His30 were not. Benign alanine substitutions at conserved surface residues elicited mutational synergies with other splicing components. YHC1-R21A was synthetically lethal in the absence of Mud2 and synthetically sick in the absence of Nam8, Mud1 and Tgs1 or in the presence of variant U1 snRNAs. YHC1 alleles K28A, Y12A, T14A, K22A and H15A displayed a progressively narrower range of synergies. R21A and K28A bypassed the essentiality of DEAD-box protein Prp28, suggesting that they affected U1•5′SS complex stability. Yhc1 Arg21 fortifies the U1•5′SS complex via contacts with SmD3 residues Glu37/Asp38, mutations of which synergized with mud2Δ and bypassed prp28Δ. YHC1-(1-170) was synthetically lethal with mutations of all components interrogated, with the exception of Nam8.
format Online
Article
Text
id pubmed-3985668
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-39856682014-04-18 Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28 Schwer, Beate Shuman, Stewart Nucleic Acids Res RNA Yhc1 and U1C are homologous essential subunits of the yeast and human U1 snRNP, respectively, that are implicated in the establishment and stability of the complex of U1 bound to the pre-mRNA 5′ splice site (5′SS). Here, we conducted a mutational analysis of Yhc1, guided by the U1C NMR structure and low-resolution crystal structure of human U1 snRNP. The N-terminal 170-amino acid segment of the 231-amino acid Yhc1 polypeptide sufficed for vegetative growth. Although changing the zinc-binding residue Cys6 to alanine was lethal, alanines at zinc-binding residues Cys9, His24 and His30 were not. Benign alanine substitutions at conserved surface residues elicited mutational synergies with other splicing components. YHC1-R21A was synthetically lethal in the absence of Mud2 and synthetically sick in the absence of Nam8, Mud1 and Tgs1 or in the presence of variant U1 snRNAs. YHC1 alleles K28A, Y12A, T14A, K22A and H15A displayed a progressively narrower range of synergies. R21A and K28A bypassed the essentiality of DEAD-box protein Prp28, suggesting that they affected U1•5′SS complex stability. Yhc1 Arg21 fortifies the U1•5′SS complex via contacts with SmD3 residues Glu37/Asp38, mutations of which synergized with mud2Δ and bypassed prp28Δ. YHC1-(1-170) was synthetically lethal with mutations of all components interrogated, with the exception of Nam8. Oxford University Press 2014-04 2014-01-31 /pmc/articles/PMC3985668/ /pubmed/24497193 http://dx.doi.org/10.1093/nar/gku097 Text en © The Author(s) 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle RNA
Schwer, Beate
Shuman, Stewart
Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28
title Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28
title_full Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28
title_fullStr Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28
title_full_unstemmed Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28
title_short Structure-function analysis of the Yhc1 subunit of yeast U1 snRNP and genetic interactions of Yhc1 with Mud2, Nam8, Mud1, Tgs1, U1 snRNA, SmD3 and Prp28
title_sort structure-function analysis of the yhc1 subunit of yeast u1 snrnp and genetic interactions of yhc1 with mud2, nam8, mud1, tgs1, u1 snrna, smd3 and prp28
topic RNA
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985668/
https://www.ncbi.nlm.nih.gov/pubmed/24497193
http://dx.doi.org/10.1093/nar/gku097
work_keys_str_mv AT schwerbeate structurefunctionanalysisoftheyhc1subunitofyeastu1snrnpandgeneticinteractionsofyhc1withmud2nam8mud1tgs1u1snrnasmd3andprp28
AT shumanstewart structurefunctionanalysisoftheyhc1subunitofyeastu1snrnpandgeneticinteractionsofyhc1withmud2nam8mud1tgs1u1snrnasmd3andprp28