Cargando…

Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern

[Image: see text] Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied exampl...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Runhui, Chen, Xinyu, Chakraborty, Saswata, Lemke, Justin J., Hayouka, Zvi, Chow, Clara, Welch, Rodney A., Weisblum, Bernard, Masters, Kristyn S., Gellman, Samuel H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985875/
https://www.ncbi.nlm.nih.gov/pubmed/24601599
http://dx.doi.org/10.1021/ja500367u
Descripción
Sumario:[Image: see text] Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp(3) carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,β,β-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications.