Cargando…
Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern
[Image: see text] Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied exampl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985875/ https://www.ncbi.nlm.nih.gov/pubmed/24601599 http://dx.doi.org/10.1021/ja500367u |
_version_ | 1782311639376199680 |
---|---|
author | Liu, Runhui Chen, Xinyu Chakraborty, Saswata Lemke, Justin J. Hayouka, Zvi Chow, Clara Welch, Rodney A. Weisblum, Bernard Masters, Kristyn S. Gellman, Samuel H. |
author_facet | Liu, Runhui Chen, Xinyu Chakraborty, Saswata Lemke, Justin J. Hayouka, Zvi Chow, Clara Welch, Rodney A. Weisblum, Bernard Masters, Kristyn S. Gellman, Samuel H. |
author_sort | Liu, Runhui |
collection | PubMed |
description | [Image: see text] Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp(3) carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,β,β-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications. |
format | Online Article Text |
id | pubmed-3985875 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-39858752015-03-07 Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern Liu, Runhui Chen, Xinyu Chakraborty, Saswata Lemke, Justin J. Hayouka, Zvi Chow, Clara Welch, Rodney A. Weisblum, Bernard Masters, Kristyn S. Gellman, Samuel H. J Am Chem Soc [Image: see text] Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp(3) carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,β,β-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications. American Chemical Society 2014-03-07 2014-03-19 /pmc/articles/PMC3985875/ /pubmed/24601599 http://dx.doi.org/10.1021/ja500367u Text en Copyright © 2014 American Chemical Society |
spellingShingle | Liu, Runhui Chen, Xinyu Chakraborty, Saswata Lemke, Justin J. Hayouka, Zvi Chow, Clara Welch, Rodney A. Weisblum, Bernard Masters, Kristyn S. Gellman, Samuel H. Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern |
title | Tuning
the Biological Activity Profile of Antibacterial
Polymers via Subunit Substitution Pattern |
title_full | Tuning
the Biological Activity Profile of Antibacterial
Polymers via Subunit Substitution Pattern |
title_fullStr | Tuning
the Biological Activity Profile of Antibacterial
Polymers via Subunit Substitution Pattern |
title_full_unstemmed | Tuning
the Biological Activity Profile of Antibacterial
Polymers via Subunit Substitution Pattern |
title_short | Tuning
the Biological Activity Profile of Antibacterial
Polymers via Subunit Substitution Pattern |
title_sort | tuning
the biological activity profile of antibacterial
polymers via subunit substitution pattern |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985875/ https://www.ncbi.nlm.nih.gov/pubmed/24601599 http://dx.doi.org/10.1021/ja500367u |
work_keys_str_mv | AT liurunhui tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT chenxinyu tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT chakrabortysaswata tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT lemkejustinj tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT hayoukazvi tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT chowclara tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT welchrodneya tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT weisblumbernard tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT masterskristyns tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern AT gellmansamuelh tuningthebiologicalactivityprofileofantibacterialpolymersviasubunitsubstitutionpattern |