Cargando…
Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits
Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting....
Autores principales: | Klinshov, Vladimir V., Teramae, Jun-nosuke, Nekorkin, Vladimir I., Fukai, Tomoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986068/ https://www.ncbi.nlm.nih.gov/pubmed/24732632 http://dx.doi.org/10.1371/journal.pone.0094292 |
Ejemplares similares
-
Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links
por: Teramae, Jun-nosuke, et al.
Publicado: (2012) -
Associative memory model with long-tail-distributed Hebbian synaptic connections
por: Hiratani, Naoki, et al.
Publicado: (2013) -
Effective Suppression of Pathological Synchronization in Cortical Networks by Highly Heterogeneous Distribution of Inhibitory Connections
por: Kada, Hisashi, et al.
Publicado: (2016) -
Highly Heterogeneous Excitatory Connections Require Less Amount of Noise to Sustain Firing Activities in Cortical Networks
por: Kada, Hisashi, et al.
Publicado: (2018) -
Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model
por: Wagatsuma, Nobuhiko, et al.
Publicado: (2013)