Cargando…

Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder)

A systematic comparison of the physicochemical properties of white ginseng (WG), extruded white ginseng (EWG), red ginseng (RG), and extruded red ginseng (ERG) was performed. The aim of the present study was to identify the effects of the physicochemical properties of ginseng by extrusion cooking. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Gui, Ying, Ryu, Gi-Hyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986504/
https://www.ncbi.nlm.nih.gov/pubmed/24748839
http://dx.doi.org/10.1016/j.jgr.2013.12.002
Descripción
Sumario:A systematic comparison of the physicochemical properties of white ginseng (WG), extruded white ginseng (EWG), red ginseng (RG), and extruded red ginseng (ERG) was performed. The aim of the present study was to identify the effects of the physicochemical properties of ginseng by extrusion cooking. The highest value of the water absorption index (WAI) was 3.64 g/g obtained from EWG, and the highest value of the water solubility index (WSI) was 45.27% obtained from ERG. The ERG had a better dispersibility compared with other samples. Extrusion cooking led to a significant increase in acidic polysaccharide and total sugar content but resulted in a decrease in crude fat and reducing sugar contents. Enzyme treatment led to a sharp increase in acidic polysaccharide content, especially the cellulose enzyme. Extrusion cooking led to a significant increase in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power, and the increases in WG and RG were 13.56% (0.038) and 3.56% (0.026), respectively. The data of this study provide valuable information about the effects of extrusion on quality changes of EWG and ERG.