Cargando…

Genome-wide association studies for hematological traits in Chinese Sutai pigs

BACKGROUND: It has been shown that hematological traits are strongly associated with the metabolism and the immune system in domestic pig. However, little is known about the genetic architecture of hematological traits. To identify quantitative trait loci (QTL) controlling hematological traits, we p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Feng, Zhang, Zhiyan, Yan, Xueming, Chen, Hao, Zhang, Wanchang, Hong, Yuan, Huang, Lusheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986688/
https://www.ncbi.nlm.nih.gov/pubmed/24674592
http://dx.doi.org/10.1186/1471-2156-15-41
Descripción
Sumario:BACKGROUND: It has been shown that hematological traits are strongly associated with the metabolism and the immune system in domestic pig. However, little is known about the genetic architecture of hematological traits. To identify quantitative trait loci (QTL) controlling hematological traits, we performed single marker Genome-wide association studies (GWAS) and haplotype analysis for 15 hematological traits in 495 Chinese Sutai pigs. RESULTS: We identified 161 significant SNPs including 44 genome-wide significant SNPs associated with 11 hematological traits by single marker GWAS. Most of them were located on SSC2. Meanwhile, we detected 499 significant SNPs containing 154 genome-wide significant SNPs associated with 9 hematological traits by haplotype analysis. Most of the identified loci were located on SSC7 and SSC9. CONCLUSIONS: We detected 4 SNPs with pleiotropic effects on SSC2 by single marker GWAS and (or) on SSC7 by haplotype analysis. Furthermore, through checking the gene functional annotations, positions and their expression variation, we finally selected 7 genes as potential candidates. Specially, we found that three genes (TRIM58, TRIM26 and TRIM21) of them originated from the same gene family and executed similar function of innate and adaptive immune. The findings will contribute to dissection the immune gene network, further identification of causative mutations underlying the identified QTLs and providing insights into the molecular basis of hematological trait in domestic pig.