Cargando…

The effect of female mating status on male offspring traits

In haplodiploid insects, males develop from unfertilized eggs; consequently, unmated females can reproduce. In a patchy, highly structured population, where brothers compete for mates and the reproductive return through sons is lower, females should minimize the number of male offspring. Consequentl...

Descripción completa

Detalles Bibliográficos
Autores principales: Gottlieb, D., Lubin, Y., Harari, A. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986899/
https://www.ncbi.nlm.nih.gov/pubmed/24771959
http://dx.doi.org/10.1007/s00265-014-1683-1
Descripción
Sumario:In haplodiploid insects, males develop from unfertilized eggs; consequently, unmated females can reproduce. In a patchy, highly structured population, where brothers compete for mates and the reproductive return through sons is lower, females should minimize the number of male offspring. Consequently, unmated females are likely to have a reduced fitness compared to mated females. Here, we tested the oviposition behaviour of the haplodiploid beetle Coccotrypes dactyliperda. In this species, the unmated female can mate with her son to produce daughters. We predicted that unmated females could increase their fitness by (1) producing only few and small sons sufficient for mother–son mating and (2) dispersing to a patch occupied by conspecific females in order to increase their or their sons’ chance of mating. We demonstrate that (1) unmated females are common (23 % of all females), (2) they oviposit more frequently than mated females in occupied patches, (3) unmated females oviposit more eggs than mated females—this is in spite of the trade-offs, evident in this study, between the number of sons and the number of the mother’s future offspring after mating, (4) unmated females have a higher proportion of dispersing sons, and (5) sons of unmated females are smaller than sons of mated females. We conclude that the incidence of unmated females in the structured populations of C. dactyliperda is explained by plasticity in their oviposition behaviour. We discuss conditions where a high incidence of unmated females can persist as a successful strategy in structured populations.