Cargando…
The effect of female mating status on male offspring traits
In haplodiploid insects, males develop from unfertilized eggs; consequently, unmated females can reproduce. In a patchy, highly structured population, where brothers compete for mates and the reproductive return through sons is lower, females should minimize the number of male offspring. Consequentl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986899/ https://www.ncbi.nlm.nih.gov/pubmed/24771959 http://dx.doi.org/10.1007/s00265-014-1683-1 |
_version_ | 1782311788645187584 |
---|---|
author | Gottlieb, D. Lubin, Y. Harari, A. R. |
author_facet | Gottlieb, D. Lubin, Y. Harari, A. R. |
author_sort | Gottlieb, D. |
collection | PubMed |
description | In haplodiploid insects, males develop from unfertilized eggs; consequently, unmated females can reproduce. In a patchy, highly structured population, where brothers compete for mates and the reproductive return through sons is lower, females should minimize the number of male offspring. Consequently, unmated females are likely to have a reduced fitness compared to mated females. Here, we tested the oviposition behaviour of the haplodiploid beetle Coccotrypes dactyliperda. In this species, the unmated female can mate with her son to produce daughters. We predicted that unmated females could increase their fitness by (1) producing only few and small sons sufficient for mother–son mating and (2) dispersing to a patch occupied by conspecific females in order to increase their or their sons’ chance of mating. We demonstrate that (1) unmated females are common (23 % of all females), (2) they oviposit more frequently than mated females in occupied patches, (3) unmated females oviposit more eggs than mated females—this is in spite of the trade-offs, evident in this study, between the number of sons and the number of the mother’s future offspring after mating, (4) unmated females have a higher proportion of dispersing sons, and (5) sons of unmated females are smaller than sons of mated females. We conclude that the incidence of unmated females in the structured populations of C. dactyliperda is explained by plasticity in their oviposition behaviour. We discuss conditions where a high incidence of unmated females can persist as a successful strategy in structured populations. |
format | Online Article Text |
id | pubmed-3986899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-39868992014-04-23 The effect of female mating status on male offspring traits Gottlieb, D. Lubin, Y. Harari, A. R. Behav Ecol Sociobiol Original Paper In haplodiploid insects, males develop from unfertilized eggs; consequently, unmated females can reproduce. In a patchy, highly structured population, where brothers compete for mates and the reproductive return through sons is lower, females should minimize the number of male offspring. Consequently, unmated females are likely to have a reduced fitness compared to mated females. Here, we tested the oviposition behaviour of the haplodiploid beetle Coccotrypes dactyliperda. In this species, the unmated female can mate with her son to produce daughters. We predicted that unmated females could increase their fitness by (1) producing only few and small sons sufficient for mother–son mating and (2) dispersing to a patch occupied by conspecific females in order to increase their or their sons’ chance of mating. We demonstrate that (1) unmated females are common (23 % of all females), (2) they oviposit more frequently than mated females in occupied patches, (3) unmated females oviposit more eggs than mated females—this is in spite of the trade-offs, evident in this study, between the number of sons and the number of the mother’s future offspring after mating, (4) unmated females have a higher proportion of dispersing sons, and (5) sons of unmated females are smaller than sons of mated females. We conclude that the incidence of unmated females in the structured populations of C. dactyliperda is explained by plasticity in their oviposition behaviour. We discuss conditions where a high incidence of unmated females can persist as a successful strategy in structured populations. Springer Berlin Heidelberg 2014-01-31 2014 /pmc/articles/PMC3986899/ /pubmed/24771959 http://dx.doi.org/10.1007/s00265-014-1683-1 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/2.0/ Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Paper Gottlieb, D. Lubin, Y. Harari, A. R. The effect of female mating status on male offspring traits |
title | The effect of female mating status on male offspring traits |
title_full | The effect of female mating status on male offspring traits |
title_fullStr | The effect of female mating status on male offspring traits |
title_full_unstemmed | The effect of female mating status on male offspring traits |
title_short | The effect of female mating status on male offspring traits |
title_sort | effect of female mating status on male offspring traits |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986899/ https://www.ncbi.nlm.nih.gov/pubmed/24771959 http://dx.doi.org/10.1007/s00265-014-1683-1 |
work_keys_str_mv | AT gottliebd theeffectoffemalematingstatusonmaleoffspringtraits AT lubiny theeffectoffemalematingstatusonmaleoffspringtraits AT harariar theeffectoffemalematingstatusonmaleoffspringtraits AT gottliebd effectoffemalematingstatusonmaleoffspringtraits AT lubiny effectoffemalematingstatusonmaleoffspringtraits AT harariar effectoffemalematingstatusonmaleoffspringtraits |