Cargando…

Evolution of within-colony distribution patterns of birds in response to habitat structure

It has long been suggested that habitat structure affects how colonial birds are distributed within their nesting aggregations, but this hypothesis has never been formally tested. The aim of this study was to test for a correlated evolution between habitat heterogeneity and within-colony distributio...

Descripción completa

Detalles Bibliográficos
Autor principal: Minias, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986900/
https://www.ncbi.nlm.nih.gov/pubmed/24771961
http://dx.doi.org/10.1007/s00265-014-1697-8
Descripción
Sumario:It has long been suggested that habitat structure affects how colonial birds are distributed within their nesting aggregations, but this hypothesis has never been formally tested. The aim of this study was to test for a correlated evolution between habitat heterogeneity and within-colony distributions of Ciconiiformes by using Pagel’s general method of comparative analysis for discrete variables. The analysis indicated that central-periphery gradients of distribution (high-quality individuals occupying central nesting locations) prevail in species breeding in homogeneous habitats. These were mainly ground-nesting larids and spheniscids, where clear central-periphery patterns were recorded in ca. 80 % of the taxa. Since homogeneous habitats provide little variation in the physical quality of nest sites, central nesting locations should be largely preferred because they give better protection against predators by means of more efficient predator detection and deterrence. By contrast, central-periphery gradients tended to be disrupted in heterogeneous habitats, where 75 % of colonial Ciconiiform species showed uniform patterns of distribution. Under this model of distribution, edge nest sites of high physical quality confer higher fitness benefits in comparison to low-quality central sites, and thus, high-quality pairs are likely to choose nest sites irrespectively of their within-colony location. Breeding in homogeneous habitats and uniform distribution patterns were identified as probable ancestral states in Ciconiiformes, but there was a significant transition rate from uniform to central-periphery distributions in species occupying homogeneous habitats.