Cargando…

Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat

BACKGROUND: Ruscogenin is a major steroid sapogenin in the traditional Chinese herb Ophiopogon japonicus that have multiple bioactivities. Recent studies have demonstrated that ruscogenin is involved in down-regulation of intercellular adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Hung-Jen, Tzeng, Thing-Fong, Liou, Shorong-Shii, Da Lin, Sheng, Wu, Ming-Chang, Liu, I-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986976/
https://www.ncbi.nlm.nih.gov/pubmed/24666993
http://dx.doi.org/10.1186/1472-6882-14-110
_version_ 1782311804124266496
author Lu, Hung-Jen
Tzeng, Thing-Fong
Liou, Shorong-Shii
Da Lin, Sheng
Wu, Ming-Chang
Liu, I-Min
author_facet Lu, Hung-Jen
Tzeng, Thing-Fong
Liou, Shorong-Shii
Da Lin, Sheng
Wu, Ming-Chang
Liu, I-Min
author_sort Lu, Hung-Jen
collection PubMed
description BACKGROUND: Ruscogenin is a major steroid sapogenin in the traditional Chinese herb Ophiopogon japonicus that have multiple bioactivities. Recent studies have demonstrated that ruscogenin is involved in down-regulation of intercellular adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) activation in anti-inflammatory pathways. We hypothesized that ruscogenin protects against diabetic nephropathy (DN) by inhibiting NF-κB-mediated inflammatory pathway. To test this hypothesis, the present study was to examine the effects of ruscogenin in rats with streptozotocin (STZ)-induced DN. METHODS: Diabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with 0.3, 1.0 or 3.0 mg/kg ruscogenin for 8 weeks. The normal rats were chosen as nondiabetic control group. The rats were sacrificed 10 weeks after induction of diabetes. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses. RESULTS: Ruscogenin administration did not lower the levels of plasma glucose and glycosylated hemoglobin in STZ-diabetic rats. Diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight, that were reversed by ruscogenin. Ruscogenin treatment was found to markedly improve histological architecture in the diabetic kidney. Renal NF-κB activity, as wells as protein expression and infiltration of macrophages were increased in diabetic kidneys, accompanied by an increase in protein content of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in kidney tissues. All of the above abnormalities were reversed by ruscogenin treatment, which also decreased the expression of transforming growth factor-β1 and fibronectin in the diabetic kidneys. CONCLUSIONS: Our data demonstrated that ruscogenin suppressed the inflammation and ameliorated the structural and functional abnormalities of the diabetic kidney in rats might be associated with inhibition of NF-κB mediated inflammatory genes expression.
format Online
Article
Text
id pubmed-3986976
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-39869762014-04-16 Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat Lu, Hung-Jen Tzeng, Thing-Fong Liou, Shorong-Shii Da Lin, Sheng Wu, Ming-Chang Liu, I-Min BMC Complement Altern Med Research Article BACKGROUND: Ruscogenin is a major steroid sapogenin in the traditional Chinese herb Ophiopogon japonicus that have multiple bioactivities. Recent studies have demonstrated that ruscogenin is involved in down-regulation of intercellular adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) activation in anti-inflammatory pathways. We hypothesized that ruscogenin protects against diabetic nephropathy (DN) by inhibiting NF-κB-mediated inflammatory pathway. To test this hypothesis, the present study was to examine the effects of ruscogenin in rats with streptozotocin (STZ)-induced DN. METHODS: Diabetes was induced with STZ (60 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats in the treatment group were orally dosed with 0.3, 1.0 or 3.0 mg/kg ruscogenin for 8 weeks. The normal rats were chosen as nondiabetic control group. The rats were sacrificed 10 weeks after induction of diabetes. Changes in renal function-related parameters in plasma and urine were analyzed at the end of the study. Kidneys were isolated for pathology histology, immunohistochemistry, and Western blot analyses. RESULTS: Ruscogenin administration did not lower the levels of plasma glucose and glycosylated hemoglobin in STZ-diabetic rats. Diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, blood urea nitrogen and proteinuria, along with marked elevation in the ratio of kidney weight to body weight, that were reversed by ruscogenin. Ruscogenin treatment was found to markedly improve histological architecture in the diabetic kidney. Renal NF-κB activity, as wells as protein expression and infiltration of macrophages were increased in diabetic kidneys, accompanied by an increase in protein content of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in kidney tissues. All of the above abnormalities were reversed by ruscogenin treatment, which also decreased the expression of transforming growth factor-β1 and fibronectin in the diabetic kidneys. CONCLUSIONS: Our data demonstrated that ruscogenin suppressed the inflammation and ameliorated the structural and functional abnormalities of the diabetic kidney in rats might be associated with inhibition of NF-κB mediated inflammatory genes expression. BioMed Central 2014-03-26 /pmc/articles/PMC3986976/ /pubmed/24666993 http://dx.doi.org/10.1186/1472-6882-14-110 Text en Copyright © 2014 Lu et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Lu, Hung-Jen
Tzeng, Thing-Fong
Liou, Shorong-Shii
Da Lin, Sheng
Wu, Ming-Chang
Liu, I-Min
Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat
title Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat
title_full Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat
title_fullStr Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat
title_full_unstemmed Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat
title_short Ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat
title_sort ruscogenin ameliorates diabetic nephropathy by its anti-inflammatory and anti-fibrotic effects in streptozotocin-induced diabetic rat
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986976/
https://www.ncbi.nlm.nih.gov/pubmed/24666993
http://dx.doi.org/10.1186/1472-6882-14-110
work_keys_str_mv AT luhungjen ruscogeninamelioratesdiabeticnephropathybyitsantiinflammatoryandantifibroticeffectsinstreptozotocininduceddiabeticrat
AT tzengthingfong ruscogeninamelioratesdiabeticnephropathybyitsantiinflammatoryandantifibroticeffectsinstreptozotocininduceddiabeticrat
AT lioushorongshii ruscogeninamelioratesdiabeticnephropathybyitsantiinflammatoryandantifibroticeffectsinstreptozotocininduceddiabeticrat
AT dalinsheng ruscogeninamelioratesdiabeticnephropathybyitsantiinflammatoryandantifibroticeffectsinstreptozotocininduceddiabeticrat
AT wumingchang ruscogeninamelioratesdiabeticnephropathybyitsantiinflammatoryandantifibroticeffectsinstreptozotocininduceddiabeticrat
AT liuimin ruscogeninamelioratesdiabeticnephropathybyitsantiinflammatoryandantifibroticeffectsinstreptozotocininduceddiabeticrat