Cargando…
Multi-model inference using mixed effects from a linear regression based genetic algorithm
BACKGROUND: Different high-dimensional regression methodologies exist for the selection of variables to predict a continuous variable. To improve the variable selection in case clustered observations are present in the training data, an extension towards mixed-effects modeling (MM) is requested, but...
Autores principales: | Van der Borght, Koen, Verbeke, Geert, van Vlijmen, Herman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987104/ https://www.ncbi.nlm.nih.gov/pubmed/24669828 http://dx.doi.org/10.1186/1471-2105-15-88 |
Ejemplares similares
-
Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling
por: Van der Borght, Koen, et al.
Publicado: (2013) -
Cross-validated stepwise regression for identification of novel non-nucleoside reverse transcriptase inhibitor resistance associated mutations
por: Van der Borght, Koen, et al.
Publicado: (2011) -
QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles
por: Van der Borght, Koen, et al.
Publicado: (2015) -
Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time
por: Finucane, Mariel M, et al.
Publicado: (2007) -
Linear mixed models for longitudinal data
por: Molenberghs, Geert, et al.
Publicado: (2000)