Cargando…

On vision in birds: coordination of head-bobbing and gait stabilises vertical head position in quail

INTRODUCTION: Head-bobbing in birds is a conspicuous behaviour related to vision comprising a hold phase and a thrust phase. The timing of these phases has been shown in many birds, including quail, to be coordinated with footfall during locomotion. We were interested in the biomechanics behind this...

Descripción completa

Detalles Bibliográficos
Autores principales: Nyakatura, John A, Andrada, Emanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987125/
https://www.ncbi.nlm.nih.gov/pubmed/24666790
http://dx.doi.org/10.1186/1742-9994-11-27
Descripción
Sumario:INTRODUCTION: Head-bobbing in birds is a conspicuous behaviour related to vision comprising a hold phase and a thrust phase. The timing of these phases has been shown in many birds, including quail, to be coordinated with footfall during locomotion. We were interested in the biomechanics behind this phenomenon. During terrestrial locomotion in birds, the trunk is subjected to gait-specific vertical oscillations. Without compensation, these vertical oscillations conflict with the demands of vision (i.e., a vertically stable head position). We tested the hypothesis that the coordination between head-bobbing and trunk movement is a means of reconciling the conflicting demands of vision and locomotion which should thus vary according to gait. RESULTS: Significant differences in the timing of head-bobbing were found between gaits. The thrust phase was initiated just prior to the double support phase in walking (vaulting) trials, whereas in running (bouncing) trials, thrust started around midstance. Altering the timing of head-trunk-coordination in simulations showed that the timing naturally favoured by birds minimizes the vertical displacement of the head. When using a bouncing gait the timing of head bobbing had a compensatory effect on the fluctuation of the potential energy of the bird’s centre of mass. CONCLUSION: The results are consistent with expectations based on the vertical trunk fluctuations observed in biomechanical models of vaulting and bouncing locomotion. The timing of the head-bobbing behaviour naturally favoured by quail benefits vision during vaulting and bouncing gaits and potentially helps reducing the mechanical cost associated with head bobbing when using a bouncing gait.