Cargando…
A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells
How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987145/ https://www.ncbi.nlm.nih.gov/pubmed/24711500 http://dx.doi.org/10.1083/jcb.201311104 |
_version_ | 1782311840677625856 |
---|---|
author | Burnette, Dylan T. Shao, Lin Ott, Carolyn Pasapera, Ana M. Fischer, Robert S. Baird, Michelle A. Der Loughian, Christelle Delanoe-Ayari, Helene Paszek, Matthew J. Davidson, Michael W. Betzig, Eric Lippincott-Schwartz, Jennifer |
author_facet | Burnette, Dylan T. Shao, Lin Ott, Carolyn Pasapera, Ana M. Fischer, Robert S. Baird, Michelle A. Der Loughian, Christelle Delanoe-Ayari, Helene Paszek, Matthew J. Davidson, Michael W. Betzig, Eric Lippincott-Schwartz, Jennifer |
author_sort | Burnette, Dylan T. |
collection | PubMed |
description | How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers’ attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions. |
format | Online Article Text |
id | pubmed-3987145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39871452014-10-14 A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells Burnette, Dylan T. Shao, Lin Ott, Carolyn Pasapera, Ana M. Fischer, Robert S. Baird, Michelle A. Der Loughian, Christelle Delanoe-Ayari, Helene Paszek, Matthew J. Davidson, Michael W. Betzig, Eric Lippincott-Schwartz, Jennifer J Cell Biol Research Articles How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers’ attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions. The Rockefeller University Press 2014-04-14 /pmc/articles/PMC3987145/ /pubmed/24711500 http://dx.doi.org/10.1083/jcb.201311104 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Burnette, Dylan T. Shao, Lin Ott, Carolyn Pasapera, Ana M. Fischer, Robert S. Baird, Michelle A. Der Loughian, Christelle Delanoe-Ayari, Helene Paszek, Matthew J. Davidson, Michael W. Betzig, Eric Lippincott-Schwartz, Jennifer A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells |
title | A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells |
title_full | A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells |
title_fullStr | A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells |
title_full_unstemmed | A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells |
title_short | A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells |
title_sort | contractile and counterbalancing adhesion system controls the 3d shape of crawling cells |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987145/ https://www.ncbi.nlm.nih.gov/pubmed/24711500 http://dx.doi.org/10.1083/jcb.201311104 |
work_keys_str_mv | AT burnettedylant acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT shaolin acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT ottcarolyn acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT pasaperaanam acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT fischerroberts acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT bairdmichellea acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT derloughianchristelle acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT delanoeayarihelene acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT paszekmatthewj acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT davidsonmichaelw acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT betzigeric acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT lippincottschwartzjennifer acontractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT burnettedylant contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT shaolin contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT ottcarolyn contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT pasaperaanam contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT fischerroberts contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT bairdmichellea contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT derloughianchristelle contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT delanoeayarihelene contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT paszekmatthewj contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT davidsonmichaelw contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT betzigeric contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells AT lippincottschwartzjennifer contractileandcounterbalancingadhesionsystemcontrolsthe3dshapeofcrawlingcells |