Cargando…

HLA-G Expression on Blasts and Tolerogenic Cells in Patients Affected by Acute Myeloid Leukemia

Human Leukocyte Antigen-G (HLA-G) contributes to cancer cell immune escape from host antitumor responses. The clinical relevance of HLA-G in several malignancies has been reported. However, the role of HLA-G expression and functions in Acute Myeloid Leukemia (AML) is still controversial. Our group i...

Descripción completa

Detalles Bibliográficos
Autores principales: Locafaro, Grazia, Amodio, Giada, Tomasoni, Daniela, Tresoldi, Cristina, Ciceri, Fabio, Gregori, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987970/
https://www.ncbi.nlm.nih.gov/pubmed/24741612
http://dx.doi.org/10.1155/2014/636292
Descripción
Sumario:Human Leukocyte Antigen-G (HLA-G) contributes to cancer cell immune escape from host antitumor responses. The clinical relevance of HLA-G in several malignancies has been reported. However, the role of HLA-G expression and functions in Acute Myeloid Leukemia (AML) is still controversial. Our group identified a subset of tolerogenic dendritic cells, DC-10 that express HLA-G and secrete IL-10. DC-10 are present in the peripheral blood and are essential in promoting and maintaining tolerance via the induction of adaptive T regulatory (Treg) cells. We investigated HLA-G expression on blasts and the presence of HLA-G-expressing DC-10 and CD4(+) T cells in the peripheral blood of AML patients at diagnosis. Moreover, we explored the possible influence of the 3′ untranslated region (3′UTR) of HLA-G, which has been associated with HLA-G expression, on AML susceptibility. Results showed that HLA-G-expressing DC-10 and CD4(+) T cells are highly represented in AML patients with HLA-G positive blasts. None of the HLA-G variation sites evaluated was associated with AML susceptibility. This is the first report describing HLA-G-expressing DC-10 and CD4(+) T cells in AML patients, suggesting that they may represent a strategy by which leukemic cells escape the host's immune system. Further studies on larger populations are required to verify our findings.