Cargando…
Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis
Tissue inhibitors of metalloproteinases (TIMPs) regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme), its roles in ther...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988092/ https://www.ncbi.nlm.nih.gov/pubmed/24736588 http://dx.doi.org/10.1371/journal.pone.0094930 |
_version_ | 1782311978858971136 |
---|---|
author | Hanaoka, Yohsuke Yasuda, Osamu Soejima, Hirofumi Miyata, Keishi Yamamoto, Eiichiro Izumiya, Yasuhiro Maeda, Nobuyo Ohishi, Mitsuru Rakugi, Hiromi Oike, Yuichi Kim-Mitsuyama, Shokei Ogawa, Hisao |
author_facet | Hanaoka, Yohsuke Yasuda, Osamu Soejima, Hirofumi Miyata, Keishi Yamamoto, Eiichiro Izumiya, Yasuhiro Maeda, Nobuyo Ohishi, Mitsuru Rakugi, Hiromi Oike, Yuichi Kim-Mitsuyama, Shokei Ogawa, Hisao |
author_sort | Hanaoka, Yohsuke |
collection | PubMed |
description | Tissue inhibitors of metalloproteinases (TIMPs) regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme), its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO) mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT) mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders. |
format | Online Article Text |
id | pubmed-3988092 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39880922014-04-21 Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis Hanaoka, Yohsuke Yasuda, Osamu Soejima, Hirofumi Miyata, Keishi Yamamoto, Eiichiro Izumiya, Yasuhiro Maeda, Nobuyo Ohishi, Mitsuru Rakugi, Hiromi Oike, Yuichi Kim-Mitsuyama, Shokei Ogawa, Hisao PLoS One Research Article Tissue inhibitors of metalloproteinases (TIMPs) regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme), its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO) mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT) mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders. Public Library of Science 2014-04-15 /pmc/articles/PMC3988092/ /pubmed/24736588 http://dx.doi.org/10.1371/journal.pone.0094930 Text en © 2014 Hanaoka et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hanaoka, Yohsuke Yasuda, Osamu Soejima, Hirofumi Miyata, Keishi Yamamoto, Eiichiro Izumiya, Yasuhiro Maeda, Nobuyo Ohishi, Mitsuru Rakugi, Hiromi Oike, Yuichi Kim-Mitsuyama, Shokei Ogawa, Hisao Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis |
title | Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis |
title_full | Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis |
title_fullStr | Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis |
title_full_unstemmed | Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis |
title_short | Tissue Inhibitor of Metalloproteinase-3 Knockout Mice Exhibit Enhanced Energy Expenditure through Thermogenesis |
title_sort | tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988092/ https://www.ncbi.nlm.nih.gov/pubmed/24736588 http://dx.doi.org/10.1371/journal.pone.0094930 |
work_keys_str_mv | AT hanaokayohsuke tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT yasudaosamu tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT soejimahirofumi tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT miyatakeishi tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT yamamotoeiichiro tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT izumiyayasuhiro tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT maedanobuyo tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT ohishimitsuru tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT rakugihiromi tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT oikeyuichi tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT kimmitsuyamashokei tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis AT ogawahisao tissueinhibitorofmetalloproteinase3knockoutmiceexhibitenhancedenergyexpenditurethroughthermogenesis |