Cargando…
Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes
Protozoan parasites of Leishmania genus are able to successfully infect their host macrophage due to multiple virulence strategies that result in its deactivation. Recent studies suggest Leishmania GP63 to be a critical virulence factor in modulation of many macrophage molecules, including protein t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988155/ https://www.ncbi.nlm.nih.gov/pubmed/24736445 http://dx.doi.org/10.1371/journal.pone.0095007 |
_version_ | 1782311989792473088 |
---|---|
author | Hassani, Kasra Shio, Marina Tiemi Martel, Caroline Faubert, Denis Olivier, Martin |
author_facet | Hassani, Kasra Shio, Marina Tiemi Martel, Caroline Faubert, Denis Olivier, Martin |
author_sort | Hassani, Kasra |
collection | PubMed |
description | Protozoan parasites of Leishmania genus are able to successfully infect their host macrophage due to multiple virulence strategies that result in its deactivation. Recent studies suggest Leishmania GP63 to be a critical virulence factor in modulation of many macrophage molecules, including protein tyrosine phosphatases (PTPs) and transcription factors (TFs). Additionally, we and others recently reported that Leishmania-released exosomes can participate in pathogenesis. Exosomes are 40–100 nm vesicles that are freed by many eukaryotic cells. To better understand the GP63-dependent immune modulation of the macrophage by Leishmania parasites and their exosomes, we compared the immunomodulatory properties of Leishmania major (WT) and L. major gp63(−/−) (KO) as well as their exosomes in vitro and in vivo. Importantly, we observed that Leishmania exosomes can modulate macrophage PTPs and TFs in a GP63-dependent manner. In addition, our qRT-PCR analyses showed that WT parasites were able to downregulate multiple genes involved in the immune response, especially cytokines and pattern recognition receptors. KO parasites showed a strongly reduced modulatory capacity compared to WT parasites. Furthermore, comparison of WT versus KO exosomes also showed divergences in alteration of gene expression, especially of chemokine receptors. In parallel, studying the in vivo inflammatory recruitment using a murine air pouch model, we found that exosomes have stronger proinflammatory properties than parasites and preferentially induce the recruitment of neutrophils. Finally, comparative proteomics of WT and KO exosomes surprisingly revealed major differences in their protein content, suggesting a role for GP63 in Leishmania exosomal protein sorting. Collectively our data clearly establish the crucial role of GP63 in dampening the innate inflammatory response during early Leishmania infection, and also provides new insights in regard to the role and biology of exosomes in Leishmania host-parasite interactions. |
format | Online Article Text |
id | pubmed-3988155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39881552014-04-21 Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes Hassani, Kasra Shio, Marina Tiemi Martel, Caroline Faubert, Denis Olivier, Martin PLoS One Research Article Protozoan parasites of Leishmania genus are able to successfully infect their host macrophage due to multiple virulence strategies that result in its deactivation. Recent studies suggest Leishmania GP63 to be a critical virulence factor in modulation of many macrophage molecules, including protein tyrosine phosphatases (PTPs) and transcription factors (TFs). Additionally, we and others recently reported that Leishmania-released exosomes can participate in pathogenesis. Exosomes are 40–100 nm vesicles that are freed by many eukaryotic cells. To better understand the GP63-dependent immune modulation of the macrophage by Leishmania parasites and their exosomes, we compared the immunomodulatory properties of Leishmania major (WT) and L. major gp63(−/−) (KO) as well as their exosomes in vitro and in vivo. Importantly, we observed that Leishmania exosomes can modulate macrophage PTPs and TFs in a GP63-dependent manner. In addition, our qRT-PCR analyses showed that WT parasites were able to downregulate multiple genes involved in the immune response, especially cytokines and pattern recognition receptors. KO parasites showed a strongly reduced modulatory capacity compared to WT parasites. Furthermore, comparison of WT versus KO exosomes also showed divergences in alteration of gene expression, especially of chemokine receptors. In parallel, studying the in vivo inflammatory recruitment using a murine air pouch model, we found that exosomes have stronger proinflammatory properties than parasites and preferentially induce the recruitment of neutrophils. Finally, comparative proteomics of WT and KO exosomes surprisingly revealed major differences in their protein content, suggesting a role for GP63 in Leishmania exosomal protein sorting. Collectively our data clearly establish the crucial role of GP63 in dampening the innate inflammatory response during early Leishmania infection, and also provides new insights in regard to the role and biology of exosomes in Leishmania host-parasite interactions. Public Library of Science 2014-04-15 /pmc/articles/PMC3988155/ /pubmed/24736445 http://dx.doi.org/10.1371/journal.pone.0095007 Text en © 2014 Hassani et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hassani, Kasra Shio, Marina Tiemi Martel, Caroline Faubert, Denis Olivier, Martin Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes |
title | Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes |
title_full | Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes |
title_fullStr | Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes |
title_full_unstemmed | Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes |
title_short | Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes |
title_sort | absence of metalloprotease gp63 alters the protein content of leishmania exosomes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988155/ https://www.ncbi.nlm.nih.gov/pubmed/24736445 http://dx.doi.org/10.1371/journal.pone.0095007 |
work_keys_str_mv | AT hassanikasra absenceofmetalloproteasegp63alterstheproteincontentofleishmaniaexosomes AT shiomarinatiemi absenceofmetalloproteasegp63alterstheproteincontentofleishmaniaexosomes AT martelcaroline absenceofmetalloproteasegp63alterstheproteincontentofleishmaniaexosomes AT faubertdenis absenceofmetalloproteasegp63alterstheproteincontentofleishmaniaexosomes AT oliviermartin absenceofmetalloproteasegp63alterstheproteincontentofleishmaniaexosomes |