Cargando…
Mining 3D Patterns from Gene Expression Temporal Data: A New Tricluster Evaluation Measure
Microarrays have revolutionized biotechnological research. The analysis of new data generated represents a computational challenge due to the characteristics of these data. Clustering techniques are applied to create groups of genes that exhibit a similar behavior. Biclustering emerges as a valuable...
Autores principales: | Gutiérrez-Avilés, David, Rubio-Escudero, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988738/ https://www.ncbi.nlm.nih.gov/pubmed/25143987 http://dx.doi.org/10.1155/2014/624371 |
Ejemplares similares
-
TRIQ: a new method to evaluate triclusters
por: Gutiérrez-Avilés, David, et al.
Publicado: (2018) -
MSL: A Measure to Evaluate Three-dimensional Patterns in Gene Expression Data
por: Gutiérrez-Avilés, David, et al.
Publicado: (2015) -
Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes
por: Bhar, Anirban, et al.
Publicado: (2015) -
G-Tric: generating three-way synthetic datasets with triclustering solutions
por: Lobo, João, et al.
Publicado: (2021) -
Triclustering-based classification of longitudinal data for prognostic prediction: targeting relevant clinical endpoints in amyotrophic lateral sclerosis
por: Soares, Diogo F., et al.
Publicado: (2023)