Cargando…
Personalized Privacy-Preserving Frequent Itemset Mining Using Randomized Response
Frequent itemset mining is the important first step of association rule mining, which discovers interesting patterns from the massive data. There are increasing concerns about the privacy problem in the frequent itemset mining. Some works have been proposed to handle this kind of problem. In this pa...
Autores principales: | Sun, Chongjing, Fu, Yan, Zhou, Junlin, Gao, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988866/ https://www.ncbi.nlm.nih.gov/pubmed/25143989 http://dx.doi.org/10.1155/2014/686151 |
Ejemplares similares
-
Reducing Side Effects of Hiding Sensitive Itemsets in Privacy Preserving Data Mining
por: Lin, Chun-Wei, et al.
Publicado: (2014) -
A primer to frequent itemset mining for bioinformatics
por: Naulaerts, Stefan, et al.
Publicado: (2015) -
The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree
por: Mi, Xifeng
Publicado: (2022) -
Research on Frequent Itemset Mining of Imaging Genetics GWAS in Alzheimer’s Disease
por: Liang, Hong, et al.
Publicado: (2022) -
An efficient pattern growth approach for mining fault tolerant frequent itemsets
por: Bashir, Shariq
Publicado: (2020)