Cargando…
An Unsupervised Approach to Predict Functional Relations between Genes Based on Expression Data
This work presents a novel approach to predict functional relations between genes using gene expression data. Genes may have various types of relations between them, for example, regulatory relations, or they may be concerned with the same protein complex or metabolic/signaling pathways and obviousl...
Autores principales: | Altaf-Ul-Amin, Md., Katsuragi, Tetsuo, Sato, Tetsuo, Ono, Naoaki, Kanaya, Shigehiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988973/ https://www.ncbi.nlm.nih.gov/pubmed/24800208 http://dx.doi.org/10.1155/2014/154594 |
Ejemplares similares
-
A Glimpse to Background and Characteristics of Major Molecular Biological Networks
por: Altaf-Ul-Amin, Md., et al.
Publicado: (2015) -
Development and Mining of a Volatile Organic Compound Database
por: Abdullah, Azian Azamimi, et al.
Publicado: (2015) -
Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks
por: Eguchi, Ryohei, et al.
Publicado: (2019) -
An integrative network-based approach to identify novel disease genes and pathways: a case study in the context of inflammatory bowel disease
por: Eguchi, Ryohei, et al.
Publicado: (2018) -
Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks
por: Antonio, Victor Andrew A., et al.
Publicado: (2018)