Cargando…
Multi-Method Approach for Characterizing the Interaction between Fusarium verticillioides and Bacillus thuringiensis Subsp. Kurstaki
Bacterial antagonists used as biocontrol agents represent part of an integrated management program to reduce pesticides in the environment. Bacillus thuringiensis is considered a good alternative as a biocontrol agent for suppressing plant pathogens such as Fusarium. In this study, we used microscop...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989188/ https://www.ncbi.nlm.nih.gov/pubmed/24739804 http://dx.doi.org/10.1371/journal.pone.0092189 |
Sumario: | Bacterial antagonists used as biocontrol agents represent part of an integrated management program to reduce pesticides in the environment. Bacillus thuringiensis is considered a good alternative as a biocontrol agent for suppressing plant pathogens such as Fusarium. In this study, we used microscopy, flow cytometry, indirect immunofluorescence, and high performance liquid chromatography to determine the interaction between B. thuringiensis subsp. kurstaki LFB-FIOCRUZ (CCGB) 257 and F. verticillioides MRC 826, an important plant pathogen frequently associated with maize. B. thuringiensis showed a strong in vitro suppressive effect on F. verticillioides growth and inhibited fumonisin production. Flow cytometry analysis was found to be adequate for characterizing the fungal cell oscillations and death during these interactions. Further studies of the antagonistic effect of this isolate against other fungi and in vivo testing are necessary to determine the efficacy of B. thuringiensis subsp. kurstaki in controlling plant pathogens. This is the first report on the use of flow cytometry for quantifying living and apoptotic F. verticillioides cells and the B. thuringiensis Cry 1Ab toxin. |
---|