Cargando…

Can Biochar and Phytoextractors Be Jointly Used for Cadmium Remediation?

Phytoremediation of soils contaminated with cadmium was tested after liming (CaO) or biochar addition, using red amaranth (Amaranthus tricolor L.) as test plant species. Two biochars with contrasting characteristics were prepared from two feedstocks and added to the soil at a rate of 3% (w:w): Eucal...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Huanping, Li, Zhian, Fu, Shenglei, Méndez, Ana, Gascó, Gabriel, Paz-Ferreiro, Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989312/
https://www.ncbi.nlm.nih.gov/pubmed/24740346
http://dx.doi.org/10.1371/journal.pone.0095218
Descripción
Sumario:Phytoremediation of soils contaminated with cadmium was tested after liming (CaO) or biochar addition, using red amaranth (Amaranthus tricolor L.) as test plant species. Two biochars with contrasting characteristics were prepared from two feedstocks and added to the soil at a rate of 3% (w:w): Eucalyptus pyrolysed at 600°C (EB) and poultry litter at 400°C (PLB). Liming was carried out in two treatments (CaO1) and (CaO2) to the same pH as the treatments EB and PLB respectively. Total plant mass increased in soils amended with PLB and with a mixture of PLB and EB; however this was not sufficient to increase the efficiency of phytoextraction. Bioavailable and mobile fractions of Cd diminished after liming or biochar addition. Our study infers that, both the amount of Cd immobilized and the main mechanism responsible for this immobilization varies according to biochar properties.