Cargando…

ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()

In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). W...

Descripción completa

Detalles Bibliográficos
Autores principales: Feischl, Michael, Führer, Thomas, Karkulik, Michael, Praetorius, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Computational Mechanics Publications 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990432/
https://www.ncbi.nlm.nih.gov/pubmed/24748725
http://dx.doi.org/10.1016/j.enganabound.2013.10.008
_version_ 1782312279224614912
author Feischl, Michael
Führer, Thomas
Karkulik, Michael
Praetorius, Dirk
author_facet Feischl, Michael
Führer, Thomas
Karkulik, Michael
Praetorius, Dirk
author_sort Feischl, Michael
collection PubMed
description In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments.
format Online
Article
Text
id pubmed-3990432
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Computational Mechanics Publications
record_format MEDLINE/PubMed
spelling pubmed-39904322014-04-18 ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() Feischl, Michael Führer, Thomas Karkulik, Michael Praetorius, Dirk Eng Anal Bound Elem Article In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. Computational Mechanics Publications 2014-01 /pmc/articles/PMC3990432/ /pubmed/24748725 http://dx.doi.org/10.1016/j.enganabound.2013.10.008 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Feischl, Michael
Führer, Thomas
Karkulik, Michael
Praetorius, Dirk
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
title ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
title_full ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
title_fullStr ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
title_full_unstemmed ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
title_short ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
title_sort zz-type a posteriori error estimators for adaptive boundary element methods on a curve()
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990432/
https://www.ncbi.nlm.nih.gov/pubmed/24748725
http://dx.doi.org/10.1016/j.enganabound.2013.10.008
work_keys_str_mv AT feischlmichael zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve
AT fuhrerthomas zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve
AT karkulikmichael zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve
AT praetoriusdirk zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve