Cargando…
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). W...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Computational Mechanics Publications
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990432/ https://www.ncbi.nlm.nih.gov/pubmed/24748725 http://dx.doi.org/10.1016/j.enganabound.2013.10.008 |
_version_ | 1782312279224614912 |
---|---|
author | Feischl, Michael Führer, Thomas Karkulik, Michael Praetorius, Dirk |
author_facet | Feischl, Michael Führer, Thomas Karkulik, Michael Praetorius, Dirk |
author_sort | Feischl, Michael |
collection | PubMed |
description | In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. |
format | Online Article Text |
id | pubmed-3990432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Computational Mechanics Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-39904322014-04-18 ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() Feischl, Michael Führer, Thomas Karkulik, Michael Praetorius, Dirk Eng Anal Bound Elem Article In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. Computational Mechanics Publications 2014-01 /pmc/articles/PMC3990432/ /pubmed/24748725 http://dx.doi.org/10.1016/j.enganabound.2013.10.008 Text en © 2013 The Authors https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Feischl, Michael Führer, Thomas Karkulik, Michael Praetorius, Dirk ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() |
title | ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() |
title_full | ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() |
title_fullStr | ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() |
title_full_unstemmed | ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() |
title_short | ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve() |
title_sort | zz-type a posteriori error estimators for adaptive boundary element methods on a curve() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990432/ https://www.ncbi.nlm.nih.gov/pubmed/24748725 http://dx.doi.org/10.1016/j.enganabound.2013.10.008 |
work_keys_str_mv | AT feischlmichael zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve AT fuhrerthomas zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve AT karkulikmichael zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve AT praetoriusdirk zztypeaposteriorierrorestimatorsforadaptiveboundaryelementmethodsonacurve |