Cargando…
Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables()
Multiple imputation is a popular way to handle missing data. Automated procedures are widely available in standard software. However, such automated procedures may hide many assumptions and possible difficulties from the view of the data analyst. Imputation procedures such as monotone imputation and...
Autores principales: | White, Ian R., Daniel, Rhian, Royston, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
North-Holland Pub. Co
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990447/ https://www.ncbi.nlm.nih.gov/pubmed/24748700 http://dx.doi.org/10.1016/j.csda.2010.04.005 |
Ejemplares similares
-
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Tuning multiple imputation by predictive mean matching and local residual draws
por: Morris, Tim P, et al.
Publicado: (2014) -
Appropriate inclusion of interactions was needed to avoid bias in multiple imputation
por: Tilling, Kate, et al.
Publicado: (2016) -
Imputing missing covariate values for the Cox model
por: White, Ian R, et al.
Publicado: (2009) -
Combining fractional polynomial model building with multiple imputation
por: Morris, Tim P., et al.
Publicado: (2015)