Cargando…
Scalable and fault tolerant orthogonalization based on randomized distributed data aggregation
The construction of distributed algorithms for matrix computations built on top of distributed data aggregation algorithms with randomized communication schedules is investigated. For this purpose, a new aggregation algorithm for summing or averaging distributed values, the push-flow algorithm, is d...
Autores principales: | Gansterer, Wilfried N., Niederbrucker, Gerhard, Straková, Hana, Schulze Grotthoff, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990450/ https://www.ncbi.nlm.nih.gov/pubmed/24748902 http://dx.doi.org/10.1016/j.jocs.2013.01.006 |
Ejemplares similares
-
Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement
por: Slučiak, Ondrej, et al.
Publicado: (2016) -
Learning Apache Cassandra: managing fault-tolerant and scalable data
por: Yarabarla, Sandeep
Publicado: (2017) -
Parallel window decoding enables scalable fault tolerant quantum computation
por: Skoric, Luka, et al.
Publicado: (2023) -
Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone
por: Ross, Zachary E., et al.
Publicado: (2017) -
Increasing the
Scalability of Toxin–Intein
Orthogonal Combinations
por: López-Igual, Rocío, et al.
Publicado: (2023)