Cargando…

Diagnostic Performance of Schistosoma Real-Time PCR in Urine Samples from Kenyan Children Infected with Schistosoma haematobium: Day-to-day Variation and Follow-up after Praziquantel Treatment

BACKGROUND: In an effort to enhance accuracy of diagnosis of Schistosoma haematobium, this study explores day-to-day variability and diagnostic performance of real-time PCR for detection and quantification of Schistosoma DNA compared to other diagnostic tools in an endemic area before and after trea...

Descripción completa

Detalles Bibliográficos
Autores principales: Vinkeles Melchers, Natalie V. S., van Dam, Govert J., Shaproski, David, Kahama, Anthony I., Brienen, Eric A. T., Vennervald, Birgitte J., van Lieshout, Lisette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990496/
https://www.ncbi.nlm.nih.gov/pubmed/24743389
http://dx.doi.org/10.1371/journal.pntd.0002807
Descripción
Sumario:BACKGROUND: In an effort to enhance accuracy of diagnosis of Schistosoma haematobium, this study explores day-to-day variability and diagnostic performance of real-time PCR for detection and quantification of Schistosoma DNA compared to other diagnostic tools in an endemic area before and after treatment. METHODOLOGY: Previously collected urine samples (N = 390) from 114 preselected proven parasitological and/or clinical S. haematobium positive Kenyan schoolchildren were analyzed by a Schistosoma internal transcribed spacer-based real-time PCR after 14 years of storage. Pre-treatment day-to-day fluctuations of PCR and microscopy over three consecutive days were measured for 24 children using intra-class correlation coefficient. A combined ‘gold standard’ (PCR and/or microscopy positive) was used to measure sensitivity and negative predictive value (NPV) of several diagnostic tools at baseline, two and 18 months post-treatment with praziquantel. PRINCIPAL FINDINGS: All 24 repeatedly tested children were PCR-positive over three days with little daily variation in median Ct-values, while 83.3% were found to be egg-positive for S. haematobium at day 1 and 75.0% at day 2 and 3 pre-treatment, signifying daily fluctuations in microscopy diagnosis. Of all 114 preselected schoolchildren, repeated microscopic measurements were required to detect 96.5% versus 100% of positive pre-treatment cases by single PCR. At two months post-treatment, microscopy and PCR detected 22.8% versus 69.3% positive children, respectively. Based on the ‘gold standard’, PCR showed high sensitivity (>92%) as compared to >31% sensitivity for microscopy, both pre- and post-treatment. CONCLUSIONS/SIGNIFICANCE: Detection and quantification of Schistosoma DNA in urine by real-time PCR was shown to be a powerful and specific diagnostic tool for detection of S. haematobium infections, with less day-to-day variation and higher sensitivity compared to microscopy. The superior performance of PCR before, and two and 18 months post-treatment provides a compelling argument for PCR as an accurate and reproducible tool for monitoring treatment efficacy.