Cargando…

Altered Hypothalamic Functional Connectivity with Autonomic Circuits and the Locus Coeruleus in Migraine

The hypothalamus has been implicated in migraine based on the manifestation of autonomic symptoms with the disease, as well as neuroimaging evidence of hypothalamic activation during attacks. Our objective was to determine functional connectivity (FC) changes between the hypothalamus and the rest of...

Descripción completa

Detalles Bibliográficos
Autores principales: Moulton, Eric A., Becerra, Lino, Johnson, Adriana, Burstein, Rami, Borsook, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990690/
https://www.ncbi.nlm.nih.gov/pubmed/24743801
http://dx.doi.org/10.1371/journal.pone.0095508
Descripción
Sumario:The hypothalamus has been implicated in migraine based on the manifestation of autonomic symptoms with the disease, as well as neuroimaging evidence of hypothalamic activation during attacks. Our objective was to determine functional connectivity (FC) changes between the hypothalamus and the rest of the brain in migraine patients vs. control subjects. This study uses fMRI (functional magnetic resonance imaging) to acquire resting state scans in 12 interictal migraine patients and 12 healthy matched controls. Hypothalamic connectivity seeds were anatomically defined based on high-resolution structural scans, and FC was assessed in the resting state scans. Migraine patients had increased hypothalamic FC with a number of brain regions involved in regulation of autonomic functions, including the locus coeruleus, caudate, parahippocampal gyrus, cerebellum, and the temporal pole. Stronger functional connections between the hypothalamus and brain areas that regulate sympathetic and parasympathetic functions may explain some of the hypothalamic-mediated autonomic symptoms that accompany or precede migraine attacks.