Cargando…

Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1

Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Tianshu, Yamamoto, Atsushi, Wilkins, Sarah E., Sokolova, Elizaveta, Yates, Luke A., Münzel, Martin, Singh, Pooja, Hopkinson, Richard J., Fischer, Roman, Cockman, Matthew E., Shelley, Jake, Trudgian, David C., Schödel, Johannes, McCullagh, James S.O., Ge, Wei, Kessler, Benedikt M., Gilbert, Robert J., Frolova, Ludmila Y., Alkalaeva, Elena, Ratcliffe, Peter J., Schofield, Christopher J., Coleman, Mathew L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991326/
https://www.ncbi.nlm.nih.gov/pubmed/24486019
http://dx.doi.org/10.1016/j.molcel.2013.12.028
_version_ 1782312415903350784
author Feng, Tianshu
Yamamoto, Atsushi
Wilkins, Sarah E.
Sokolova, Elizaveta
Yates, Luke A.
Münzel, Martin
Singh, Pooja
Hopkinson, Richard J.
Fischer, Roman
Cockman, Matthew E.
Shelley, Jake
Trudgian, David C.
Schödel, Johannes
McCullagh, James S.O.
Ge, Wei
Kessler, Benedikt M.
Gilbert, Robert J.
Frolova, Ludmila Y.
Alkalaeva, Elena
Ratcliffe, Peter J.
Schofield, Christopher J.
Coleman, Mathew L.
author_facet Feng, Tianshu
Yamamoto, Atsushi
Wilkins, Sarah E.
Sokolova, Elizaveta
Yates, Luke A.
Münzel, Martin
Singh, Pooja
Hopkinson, Richard J.
Fischer, Roman
Cockman, Matthew E.
Shelley, Jake
Trudgian, David C.
Schödel, Johannes
McCullagh, James S.O.
Ge, Wei
Kessler, Benedikt M.
Gilbert, Robert J.
Frolova, Ludmila Y.
Alkalaeva, Elena
Ratcliffe, Peter J.
Schofield, Christopher J.
Coleman, Mathew L.
author_sort Feng, Tianshu
collection PubMed
description Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.
format Online
Article
Text
id pubmed-3991326
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-39913262014-04-18 Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1 Feng, Tianshu Yamamoto, Atsushi Wilkins, Sarah E. Sokolova, Elizaveta Yates, Luke A. Münzel, Martin Singh, Pooja Hopkinson, Richard J. Fischer, Roman Cockman, Matthew E. Shelley, Jake Trudgian, David C. Schödel, Johannes McCullagh, James S.O. Ge, Wei Kessler, Benedikt M. Gilbert, Robert J. Frolova, Ludmila Y. Alkalaeva, Elena Ratcliffe, Peter J. Schofield, Christopher J. Coleman, Mathew L. Mol Cell Short Article Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation. Cell Press 2014-02-20 /pmc/articles/PMC3991326/ /pubmed/24486019 http://dx.doi.org/10.1016/j.molcel.2013.12.028 Text en © 2014 The Authors http://creativecommons.org/licenses/by/3.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Short Article
Feng, Tianshu
Yamamoto, Atsushi
Wilkins, Sarah E.
Sokolova, Elizaveta
Yates, Luke A.
Münzel, Martin
Singh, Pooja
Hopkinson, Richard J.
Fischer, Roman
Cockman, Matthew E.
Shelley, Jake
Trudgian, David C.
Schödel, Johannes
McCullagh, James S.O.
Ge, Wei
Kessler, Benedikt M.
Gilbert, Robert J.
Frolova, Ludmila Y.
Alkalaeva, Elena
Ratcliffe, Peter J.
Schofield, Christopher J.
Coleman, Mathew L.
Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1
title Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1
title_full Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1
title_fullStr Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1
title_full_unstemmed Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1
title_short Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1
title_sort optimal translational termination requires c4 lysyl hydroxylation of erf1
topic Short Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991326/
https://www.ncbi.nlm.nih.gov/pubmed/24486019
http://dx.doi.org/10.1016/j.molcel.2013.12.028
work_keys_str_mv AT fengtianshu optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT yamamotoatsushi optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT wilkinssarahe optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT sokolovaelizaveta optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT yateslukea optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT munzelmartin optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT singhpooja optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT hopkinsonrichardj optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT fischerroman optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT cockmanmatthewe optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT shelleyjake optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT trudgiandavidc optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT schodeljohannes optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT mccullaghjamesso optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT gewei optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT kesslerbenediktm optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT gilbertrobertj optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT frolovaludmilay optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT alkalaevaelena optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT ratcliffepeterj optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT schofieldchristopherj optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1
AT colemanmathewl optimaltranslationalterminationrequiresc4lysylhydroxylationoferf1