Cargando…
Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension
BACKGROUND: An important challenge to pulmonary arterial hypertension (PAH) diagnosis and treatment is early detection of occult pulmonary vascular pathology. Symptoms are frequently confused with other disease entities that lead to inappropriate interventions and allow for progression to advanced s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991617/ https://www.ncbi.nlm.nih.gov/pubmed/24748102 http://dx.doi.org/10.1371/journal.pone.0095331 |
_version_ | 1782312469438398464 |
---|---|
author | Mansoor, J. K. Schelegle, Edward S. Davis, Cristina E. Walby, William F. Zhao, Weixiang Aksenov, Alexander A. Pasamontes, Alberto Figueroa, Jennifer Allen, Roblee |
author_facet | Mansoor, J. K. Schelegle, Edward S. Davis, Cristina E. Walby, William F. Zhao, Weixiang Aksenov, Alexander A. Pasamontes, Alberto Figueroa, Jennifer Allen, Roblee |
author_sort | Mansoor, J. K. |
collection | PubMed |
description | BACKGROUND: An important challenge to pulmonary arterial hypertension (PAH) diagnosis and treatment is early detection of occult pulmonary vascular pathology. Symptoms are frequently confused with other disease entities that lead to inappropriate interventions and allow for progression to advanced states of disease. There is a significant need to develop new markers for early disease detection and management of PAH. METHODOLGY AND FINDINGS: Exhaled breath condensate (EBC) samples were compared from 30 age-matched normal healthy individuals and 27 New York Heart Association functional class III and IV idiopathic pulmonary arterial hypertenion (IPAH) patients, a subgroup of PAH. Volatile organic compounds (VOC) in EBC samples were analyzed using gas chromatography/mass spectrometry (GC/MS). Individual peaks in GC profiles were identified in both groups and correlated with pulmonary hemodynamic and clinical endpoints in the IPAH group. Additionally, GC/MS data were analyzed using autoregression followed by partial least squares regression (AR/PLSR) analysis to discriminate between the IPAH and control groups. After correcting for medicaitons, there were 62 unique compounds in the control group, 32 unique compounds in the IPAH group, and 14 in-common compounds between groups. Peak-by-peak analysis of GC profiles of IPAH group EBC samples identified 6 compounds significantly correlated with pulmonary hemodynamic variables important in IPAH diagnosis. AR/PLSR analysis of GC/MS data resulted in a distinct and identifiable metabolic signature for IPAH patients. CONCLUSIONS: These findings indicate the utility of EBC VOC analysis to discriminate between severe IPAH and a healthy population; additionally, we identified potential novel biomarkers that correlated with IPAH pulmonary hemodynamic variables that may be important in screening for less severe forms IPAH. |
format | Online Article Text |
id | pubmed-3991617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39916172014-04-21 Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension Mansoor, J. K. Schelegle, Edward S. Davis, Cristina E. Walby, William F. Zhao, Weixiang Aksenov, Alexander A. Pasamontes, Alberto Figueroa, Jennifer Allen, Roblee PLoS One Research Article BACKGROUND: An important challenge to pulmonary arterial hypertension (PAH) diagnosis and treatment is early detection of occult pulmonary vascular pathology. Symptoms are frequently confused with other disease entities that lead to inappropriate interventions and allow for progression to advanced states of disease. There is a significant need to develop new markers for early disease detection and management of PAH. METHODOLGY AND FINDINGS: Exhaled breath condensate (EBC) samples were compared from 30 age-matched normal healthy individuals and 27 New York Heart Association functional class III and IV idiopathic pulmonary arterial hypertenion (IPAH) patients, a subgroup of PAH. Volatile organic compounds (VOC) in EBC samples were analyzed using gas chromatography/mass spectrometry (GC/MS). Individual peaks in GC profiles were identified in both groups and correlated with pulmonary hemodynamic and clinical endpoints in the IPAH group. Additionally, GC/MS data were analyzed using autoregression followed by partial least squares regression (AR/PLSR) analysis to discriminate between the IPAH and control groups. After correcting for medicaitons, there were 62 unique compounds in the control group, 32 unique compounds in the IPAH group, and 14 in-common compounds between groups. Peak-by-peak analysis of GC profiles of IPAH group EBC samples identified 6 compounds significantly correlated with pulmonary hemodynamic variables important in IPAH diagnosis. AR/PLSR analysis of GC/MS data resulted in a distinct and identifiable metabolic signature for IPAH patients. CONCLUSIONS: These findings indicate the utility of EBC VOC analysis to discriminate between severe IPAH and a healthy population; additionally, we identified potential novel biomarkers that correlated with IPAH pulmonary hemodynamic variables that may be important in screening for less severe forms IPAH. Public Library of Science 2014-04-18 /pmc/articles/PMC3991617/ /pubmed/24748102 http://dx.doi.org/10.1371/journal.pone.0095331 Text en © 2014 Mansoor et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mansoor, J. K. Schelegle, Edward S. Davis, Cristina E. Walby, William F. Zhao, Weixiang Aksenov, Alexander A. Pasamontes, Alberto Figueroa, Jennifer Allen, Roblee Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension |
title | Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension |
title_full | Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension |
title_fullStr | Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension |
title_full_unstemmed | Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension |
title_short | Analysis of Volatile Compounds in Exhaled Breath Condensate in Patients with Severe Pulmonary Arterial Hypertension |
title_sort | analysis of volatile compounds in exhaled breath condensate in patients with severe pulmonary arterial hypertension |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991617/ https://www.ncbi.nlm.nih.gov/pubmed/24748102 http://dx.doi.org/10.1371/journal.pone.0095331 |
work_keys_str_mv | AT mansoorjk analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT schelegleedwards analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT daviscristinae analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT walbywilliamf analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT zhaoweixiang analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT aksenovalexandera analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT pasamontesalberto analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT figueroajennifer analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension AT allenroblee analysisofvolatilecompoundsinexhaledbreathcondensateinpatientswithseverepulmonaryarterialhypertension |