Cargando…
Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging
PURPOSE: The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchy...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991630/ https://www.ncbi.nlm.nih.gov/pubmed/24747914 http://dx.doi.org/10.1371/journal.pone.0094833 |
_version_ | 1782312472405868544 |
---|---|
author | Wolfs, Esther Holvoet, Bryan Gijsbers, Rik Casteels, Cindy Roberts, Scott J. Struys, Tom Maris, Michael Ibrahimi, Abdelilah Debyser, Zeger Van Laere, Koen Verfaillie, Catherine M. Deroose, Christophe M. |
author_facet | Wolfs, Esther Holvoet, Bryan Gijsbers, Rik Casteels, Cindy Roberts, Scott J. Struys, Tom Maris, Michael Ibrahimi, Abdelilah Debyser, Zeger Van Laere, Koen Verfaillie, Catherine M. Deroose, Christophe M. |
author_sort | Wolfs, Esther |
collection | PubMed |
description | PURPOSE: The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters. METHODS: First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, (124)I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using (99m)TcO(4) (−) radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell's differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI. RESULTS: The expression of both imaging reporter genes was functional and specific. An elution of (99m)TcO(4) (−) from the cells was observed, with 31% retention after 3 h. After labeling cells with (124)I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using (124)I small-animal PET, CLI and BLI. CONCLUSIONS: This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications. |
format | Online Article Text |
id | pubmed-3991630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39916302014-04-21 Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging Wolfs, Esther Holvoet, Bryan Gijsbers, Rik Casteels, Cindy Roberts, Scott J. Struys, Tom Maris, Michael Ibrahimi, Abdelilah Debyser, Zeger Van Laere, Koen Verfaillie, Catherine M. Deroose, Christophe M. PLoS One Research Article PURPOSE: The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters. METHODS: First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, (124)I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using (99m)TcO(4) (−) radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell's differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI. RESULTS: The expression of both imaging reporter genes was functional and specific. An elution of (99m)TcO(4) (−) from the cells was observed, with 31% retention after 3 h. After labeling cells with (124)I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using (124)I small-animal PET, CLI and BLI. CONCLUSIONS: This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications. Public Library of Science 2014-04-18 /pmc/articles/PMC3991630/ /pubmed/24747914 http://dx.doi.org/10.1371/journal.pone.0094833 Text en © 2014 Wolfs et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wolfs, Esther Holvoet, Bryan Gijsbers, Rik Casteels, Cindy Roberts, Scott J. Struys, Tom Maris, Michael Ibrahimi, Abdelilah Debyser, Zeger Van Laere, Koen Verfaillie, Catherine M. Deroose, Christophe M. Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging |
title | Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging |
title_full | Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging |
title_fullStr | Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging |
title_full_unstemmed | Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging |
title_short | Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging |
title_sort | optimization of multimodal imaging of mesenchymal stem cells using the human sodium iodide symporter for pet and cerenkov luminescence imaging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991630/ https://www.ncbi.nlm.nih.gov/pubmed/24747914 http://dx.doi.org/10.1371/journal.pone.0094833 |
work_keys_str_mv | AT wolfsesther optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT holvoetbryan optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT gijsbersrik optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT casteelscindy optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT robertsscottj optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT struystom optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT marismichael optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT ibrahimiabdelilah optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT debyserzeger optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT vanlaerekoen optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT verfailliecatherinem optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging AT deroosechristophem optimizationofmultimodalimagingofmesenchymalstemcellsusingthehumansodiumiodidesymporterforpetandcerenkovluminescenceimaging |