Cargando…
A Robust Classifier to Distinguish Noise from fMRI Independent Components
Analyzing Functional Magnetic Resonance Imaging (fMRI) of resting brains to determine the spatial location and activity of intrinsic brain networks–a novel and burgeoning research field–is limited by the lack of ground truth and the tendency of analyses to overfit the data. Independent Component Ana...
Autores principales: | Sochat, Vanessa, Supekar, Kaustubh, Bustillo, Juan, Calhoun, Vince, Turner, Jessica A., Rubin, Daniel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991682/ https://www.ncbi.nlm.nih.gov/pubmed/24748378 http://dx.doi.org/10.1371/journal.pone.0095493 |
Ejemplares similares
-
Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence
por: Calhoun, Vince D., et al.
Publicado: (2013) -
Correction: Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence
por: Calhoun, Vince D., et al.
Publicado: (2013) -
Investigation of True High Frequency Electrical Substrates of fMRI-Based Resting State Networks Using Parallel Independent Component Analysis of Simultaneous EEG/fMRI Data
por: Kyathanahally, Sreenath P., et al.
Publicado: (2017) -
Robust Data Driven Model Order Estimation for Independent Component Analysis of fMRI Data with Low Contrast to Noise
por: Majeed, Waqas, et al.
Publicado: (2014) -
The PyMVPA BIDS-App: a robust multivariate pattern analysis pipeline for fMRI data
por: Torabian, Sajjad, et al.
Publicado: (2023)