Cargando…
Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis
Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991719/ https://www.ncbi.nlm.nih.gov/pubmed/24748386 http://dx.doi.org/10.1371/journal.pone.0095661 |
_version_ | 1782312491737415680 |
---|---|
author | Merriman, Joseph A. Nemeth, Kimberly A. Schlievert, Patrick M. |
author_facet | Merriman, Joseph A. Nemeth, Kimberly A. Schlievert, Patrick M. |
author_sort | Merriman, Joseph A. |
collection | PubMed |
description | Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. |
format | Online Article Text |
id | pubmed-3991719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39917192014-04-21 Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis Merriman, Joseph A. Nemeth, Kimberly A. Schlievert, Patrick M. PLoS One Research Article Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. Public Library of Science 2014-04-18 /pmc/articles/PMC3991719/ /pubmed/24748386 http://dx.doi.org/10.1371/journal.pone.0095661 Text en © 2014 Merriman et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Merriman, Joseph A. Nemeth, Kimberly A. Schlievert, Patrick M. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis |
title | Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis |
title_full | Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis |
title_fullStr | Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis |
title_full_unstemmed | Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis |
title_short | Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis |
title_sort | novel antimicrobial peptides that inhibit gram positive bacterial exotoxin synthesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991719/ https://www.ncbi.nlm.nih.gov/pubmed/24748386 http://dx.doi.org/10.1371/journal.pone.0095661 |
work_keys_str_mv | AT merrimanjosepha novelantimicrobialpeptidesthatinhibitgrampositivebacterialexotoxinsynthesis AT nemethkimberlya novelantimicrobialpeptidesthatinhibitgrampositivebacterialexotoxinsynthesis AT schlievertpatrickm novelantimicrobialpeptidesthatinhibitgrampositivebacterialexotoxinsynthesis |