Cargando…

Rab8 Binding to Immune Cell-Specific Adaptor LAX Facilitates Formation of trans-Golgi Network-Proximal CTLA-4 Vesicles for Surface Expression

Despite playing a central role in tolerance, little is known regarding the mechanism by which intracellular CTLA-4 is shuttled from the trans-Golgi network to the surfaces of T cells. In this context, Ras-related GTPase Rab8 plays an important role in the intracellular transport, while we have previ...

Descripción completa

Detalles Bibliográficos
Autores principales: Banton, Matthew C., Inder, Kerry L., Valk, Elke, Rudd, Christopher E., Schneider, Helga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993577/
https://www.ncbi.nlm.nih.gov/pubmed/24515439
http://dx.doi.org/10.1128/MCB.01331-13
Descripción
Sumario:Despite playing a central role in tolerance, little is known regarding the mechanism by which intracellular CTLA-4 is shuttled from the trans-Golgi network to the surfaces of T cells. In this context, Ras-related GTPase Rab8 plays an important role in the intracellular transport, while we have previously shown that CTLA-4 binds to the immune cell adaptor TRIM in T cells. In this study, we demonstrate that CTLA-4 forms a multimeric complex comprised of TRIM and related LAX that in turn binds to GTP bound Rab8 for post-Golgi transport to the cell surface. LAX bound via its N terminus to active GTP-Rab8, as well as the cytoplasmic tail of CTLA-4. TRIM required LAX for binding to Rab8 in a complex. Wild-type LAX or its N terminus (residues 1 to 77) increased CTLA-4 surface expression, whereas small interfering RNAs of Rab8 or LAX or disruption of LAX/Rab8 binding reduced numbers of CTLA-4-containing vesicles and its coreceptor surface expression. LAX also promoted the polarization of CTLA-4 and the reorientation of the microtubule-organizing center to the site of T-cell receptor engagement. Our results identify a novel CTLA-4/TRIM/LAX/Rab8 effector complex in the transport of CTLA-4 to the surfaces of T cells.