Cargando…
Synergism between Airborne Singlet Oxygen and a Trisubstituted Olefin Sulfonate for the Inactivation of Bacteria
[Image: see text] The reactivity of a trisubstituted alkene surfactant (8-methylnon-7-ene-1 sulfonate, 1) to airborne singlet oxygen in a solution containing E. coli was examined. Surfactant 1 was prepared by a Strecker-type reaction of 9-bromo-2-methylnon-2-ene with sodium sulfite. Submicellar conc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993907/ https://www.ncbi.nlm.nih.gov/pubmed/24611688 http://dx.doi.org/10.1021/la404564k |
Sumario: | [Image: see text] The reactivity of a trisubstituted alkene surfactant (8-methylnon-7-ene-1 sulfonate, 1) to airborne singlet oxygen in a solution containing E. coli was examined. Surfactant 1 was prepared by a Strecker-type reaction of 9-bromo-2-methylnon-2-ene with sodium sulfite. Submicellar concentrations of 1 were used that reacted with singlet oxygen by an “ene” reaction to yield two hydroperoxides (7-hydroperoxy-8-methylnon-8-ene-1 sulfonate and (E)-8-hydroperoxy-8-methylnon-6-ene-1 sulfonate) in a 4:1 ratio. Exchanging the H(2)O solution for D(2)O where the lifetime of solution-phase singlet oxygen increases by 20-fold led to an ∼2-fold increase in the yield of hydroperoxides pointing to surface activity of singlet oxygen with the surfactant in a partially solvated state. In this airborne singlet oxygen reaction, E. coli inactivation was monitored in the presence and absence of 1 and by a LIVE/DEAD cell permeabilization assay. It was shown that the surfactant has low dark toxicity with respect to the bacteria, but in the presence of airborne singlet oxygen, it produces a synergistic enhancement of the bacterial inactivation. How the ene-derived surfactant hydroperoxides can provoke (1)O(2) toxicity and be of general utility is discussed. |
---|