Cargando…
Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors
BACKGROUND: Non-muscle myosin II (NM II) regulates a wide range of cellular functions, including neuronal differentiation, which requires precise spatio-temporal activation of Rho GTPases. The molecular mechanism underlying the NM II-mediated activation of Rho GTPases is poorly understood. The prese...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994028/ https://www.ncbi.nlm.nih.gov/pubmed/24752242 http://dx.doi.org/10.1371/journal.pone.0095212 |
_version_ | 1782312653432029184 |
---|---|
author | Shin, Eun-Young Lee, Chan-Soo Yun, Cheong-Yong Won, So-Yoon Kim, Hyong-Kyu Lee, Yong Hee Kwak, Sahng-June Kim, Eung-Gook |
author_facet | Shin, Eun-Young Lee, Chan-Soo Yun, Cheong-Yong Won, So-Yoon Kim, Hyong-Kyu Lee, Yong Hee Kwak, Sahng-June Kim, Eung-Gook |
author_sort | Shin, Eun-Young |
collection | PubMed |
description | BACKGROUND: Non-muscle myosin II (NM II) regulates a wide range of cellular functions, including neuronal differentiation, which requires precise spatio-temporal activation of Rho GTPases. The molecular mechanism underlying the NM II-mediated activation of Rho GTPases is poorly understood. The present study explored the possibility that NM II regulates neuronal differentiation, particularly morphological changes in growth cones and the distal axon, through guanine nucleotide exchange factors (GEFs) of the Dbl family. PRINCIPAL FINDINGS: NM II colocalized with GEFs, such as βPIX, kalirin and intersectin, in growth cones. Inactivation of NM II by blebbistatin (BBS) led to the increased formation of short and thick filopodial actin structures at the periphery of growth cones. In line with these observations, FRET analysis revealed enhanced Cdc42 activity in BBS-treated growth cones. BBS treatment also induced aberrant targeting of various GEFs to the distal axon where GEFs were seldom observed under physiological conditions. As a result, numerous protrusions and branches were generated on the shaft of the distal axon. The disruption of the NM II–GEF interactions by overexpression of the DH domains of βPIX or Tiam1, or by βPIX depletion with specific siRNAs inhibited growth cone formation and induced slender axons concomitant with multiple branches in cultured hippocampal neurons. Finally, stimulation with nerve growth factor induced transient dissociation of the NM II–GEF complex, which was closely correlated with the kinetics of Cdc42 and Rac1 activation. CONCLUSION: Our results suggest that NM II maintains proper morphology of neuronal growth cones and the distal axon by regulating actin dynamics through the GEF–Rho GTPase signaling pathway. |
format | Online Article Text |
id | pubmed-3994028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39940282014-04-25 Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors Shin, Eun-Young Lee, Chan-Soo Yun, Cheong-Yong Won, So-Yoon Kim, Hyong-Kyu Lee, Yong Hee Kwak, Sahng-June Kim, Eung-Gook PLoS One Research Article BACKGROUND: Non-muscle myosin II (NM II) regulates a wide range of cellular functions, including neuronal differentiation, which requires precise spatio-temporal activation of Rho GTPases. The molecular mechanism underlying the NM II-mediated activation of Rho GTPases is poorly understood. The present study explored the possibility that NM II regulates neuronal differentiation, particularly morphological changes in growth cones and the distal axon, through guanine nucleotide exchange factors (GEFs) of the Dbl family. PRINCIPAL FINDINGS: NM II colocalized with GEFs, such as βPIX, kalirin and intersectin, in growth cones. Inactivation of NM II by blebbistatin (BBS) led to the increased formation of short and thick filopodial actin structures at the periphery of growth cones. In line with these observations, FRET analysis revealed enhanced Cdc42 activity in BBS-treated growth cones. BBS treatment also induced aberrant targeting of various GEFs to the distal axon where GEFs were seldom observed under physiological conditions. As a result, numerous protrusions and branches were generated on the shaft of the distal axon. The disruption of the NM II–GEF interactions by overexpression of the DH domains of βPIX or Tiam1, or by βPIX depletion with specific siRNAs inhibited growth cone formation and induced slender axons concomitant with multiple branches in cultured hippocampal neurons. Finally, stimulation with nerve growth factor induced transient dissociation of the NM II–GEF complex, which was closely correlated with the kinetics of Cdc42 and Rac1 activation. CONCLUSION: Our results suggest that NM II maintains proper morphology of neuronal growth cones and the distal axon by regulating actin dynamics through the GEF–Rho GTPase signaling pathway. Public Library of Science 2014-04-21 /pmc/articles/PMC3994028/ /pubmed/24752242 http://dx.doi.org/10.1371/journal.pone.0095212 Text en © 2014 Shin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Shin, Eun-Young Lee, Chan-Soo Yun, Cheong-Yong Won, So-Yoon Kim, Hyong-Kyu Lee, Yong Hee Kwak, Sahng-June Kim, Eung-Gook Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors |
title | Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors |
title_full | Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors |
title_fullStr | Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors |
title_full_unstemmed | Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors |
title_short | Non-Muscle Myosin II Regulates Neuronal Actin Dynamics by Interacting with Guanine Nucleotide Exchange Factors |
title_sort | non-muscle myosin ii regulates neuronal actin dynamics by interacting with guanine nucleotide exchange factors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994028/ https://www.ncbi.nlm.nih.gov/pubmed/24752242 http://dx.doi.org/10.1371/journal.pone.0095212 |
work_keys_str_mv | AT shineunyoung nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors AT leechansoo nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors AT yuncheongyong nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors AT wonsoyoon nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors AT kimhyongkyu nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors AT leeyonghee nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors AT kwaksahngjune nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors AT kimeunggook nonmusclemyosiniiregulatesneuronalactindynamicsbyinteractingwithguaninenucleotideexchangefactors |