Cargando…
Cross-validation pitfalls when selecting and assessing regression and classification models
BACKGROUND: We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe...
Autores principales: | Krstajic, Damjan, Buturovic, Ljubomir J, Leahy, David E, Thomas, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994246/ https://www.ncbi.nlm.nih.gov/pubmed/24678909 http://dx.doi.org/10.1186/1758-2946-6-10 |
Ejemplares similares
-
Validation and updating of risk models based on multinomial logistic regression
por: Van Calster, Ben, et al.
Publicado: (2017) -
Classification and regression trees for epidemiologic research: an air pollution example
por: Gass, Katherine, et al.
Publicado: (2014) -
Selecting Spatial Scale of Covariates in Regression Models of Environmental Exposures
por: Grant, Lauren P., et al.
Publicado: (2015) -
Cross-validation to select Bayesian hierarchical models in phylogenetics
por: Duchêne, Sebastián, et al.
Publicado: (2016) -
Missed opportunities in large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery
por: Krstajic, Damjan
Publicado: (2019)