Cargando…
Regulation of persistent activity in hippocampal mossy cells by inhibitory synaptic potentials
The hippocampal formation receives strong cholinergic input from the septal/diagonal band complex. Although the functional effects of cholinergic activation have been extensively studied in pyramidal neurons within the hippocampus and entorhinal cortex, less is known about the role of cholinergic re...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994498/ https://www.ncbi.nlm.nih.gov/pubmed/24737918 http://dx.doi.org/10.1101/lm.033829.113 |
Sumario: | The hippocampal formation receives strong cholinergic input from the septal/diagonal band complex. Although the functional effects of cholinergic activation have been extensively studied in pyramidal neurons within the hippocampus and entorhinal cortex, less is known about the role of cholinergic receptors on dentate gyrus neurons. Using intracellular recordings from rat dentate hilar neurons, we find that activation of m1-type muscarinic receptors selectively increases the excitability of glutamatergic mossy cells but not of hilar interneurons. Following brief stimuli, cholinergic modulation reveals a latent afterdepolarization response in mossy cells that can extend the duration of stimulus-evoked depolarization by >100 msec. Depolarizing stimuli also could trigger persistent firing in mossy cells exposed to carbachol or an m1 receptor agonist. Evoked IPSPs attenuated the ADP response in mossy cells. The functional effect of IPSPs was amplified during ADP responses triggered in the presence of cholinergic receptor agonists but not during slowly decaying simulated ADPs, suggesting that modulation of ADP responses by IPSPs arises from destabilization of the intrinsic currents underlying the ADP. Evoked IPSPs also could halt persistent firing triggered by depolarizing stimuli. These results show that through intrinsic properties modulated by muscarinic receptors, mossy cells can prolong depolarizing responses to excitatory input and extend the time window where multiple synaptic inputs can summate. By actively regulating the intrinsic response to synaptic input, inhibitory synaptic input can dynamically control the integration window that enables detection of coincident inputs and shape the spatial pattern of hilar cell activity. |
---|