Cargando…
Bayesian spatiotemporal modelling for the assessment of short-term exposure to particle pollution in urban areas
This paper describes a Bayesian hierarchical approach to predict short-term concentrations of particle pollution in an urban environment, with application to inhalable particulate matter (PM(10)) in Greater London. We developed and compared several spatiotemporal models that differently accounted fo...
Autores principales: | Pirani, Monica, Gulliver, John, Fuller, Gary W, Blangiardo, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994509/ https://www.ncbi.nlm.nih.gov/pubmed/24280683 http://dx.doi.org/10.1038/jes.2013.85 |
Ejemplares similares
-
Long-term exposure to air pollution and COVID-19 incidence: A multi-country study()
por: Huang, Guowen, et al.
Publicado: (2021) -
Analysing the health effects of simultaneous exposure to physical and chemical properties of airborne particles
por: Pirani, Monica, et al.
Publicado: (2015) -
A hierarchical modelling approach to assess multi pollutant effects in time-series studies
por: Blangiardo, Marta, et al.
Publicado: (2019) -
A dependent Bayesian Dirichlet process model for source apportionment of particle number size distribution
por: Baerenbold, Oliver, et al.
Publicado: (2022) -
Spatiotemporal bayesian modelling of scorpionism and its risk factors in the state of São Paulo, Brazil
por: Chiaravalloti-Neto, Francisco, et al.
Publicado: (2023)