Cargando…
Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering
Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the ne...
Autores principales: | Saffarzadeh, Vahid Mohammadi, Osareh, Alireza, Shadgar, Bita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994716/ https://www.ncbi.nlm.nih.gov/pubmed/24761376 |
Ejemplares similares
-
An Automated Tracking Approach for Extraction of Retinal Vasculature in Fundus Images
por: Osareh, Alireza, et al.
Publicado: (2010) -
An Efficient Ensemble Learning Method for Gene Microarray Classification
por: Osareh, Alireza, et al.
Publicado: (2013) -
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation
por: Khawaja, Ahsan, et al.
Publicado: (2019) -
Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing
por: Sarrafzadeh, Omid, et al.
Publicado: (2015)