Cargando…

From assessment to improvement of elderly care in general practice using decision support to increase adherence to ACOVE quality indicators: study protocol for randomized control trial

BACKGROUND: Previous efforts such as Assessing Care of Vulnerable Elders (ACOVE) provide quality indicators for assessing the care of elderly patients, but thus far little has been done to leverage this knowledge to improve care for these patients. We describe a clinical decision support system to i...

Descripción completa

Detalles Bibliográficos
Autores principales: Eslami, Saeid, Askari, Marjan, Medlock, Stephanie, Arts, Derk L, Wyatt, Jeremy C, van Weert, Henk CPM, de Rooij, Sophia E, Abu-Hanna, Ameen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994782/
https://www.ncbi.nlm.nih.gov/pubmed/24642339
http://dx.doi.org/10.1186/1745-6215-15-81
Descripción
Sumario:BACKGROUND: Previous efforts such as Assessing Care of Vulnerable Elders (ACOVE) provide quality indicators for assessing the care of elderly patients, but thus far little has been done to leverage this knowledge to improve care for these patients. We describe a clinical decision support system to improve general practitioner (GP) adherence to ACOVE quality indicators and a protocol for investigating impact on GPs’ adherence to the rules. DESIGN: We propose two randomized controlled trials among a group of Dutch GP teams on adherence to ACOVE quality indicators. In both trials a clinical decision support system provides un-intrusive feedback appearing as a color-coded, dynamically updated, list of items needing attention. The first trial pertains to real-time automatically verifiable rules. The second trial concerns non-automatically verifiable rules (adherence cannot be established by the clinical decision support system itself, but the GPs report whether they will adhere to the rules). In both trials we will randomize teams of GPs caring for the same patients into two groups, A and B. For the automatically verifiable rules, group A GPs receive support only for a specific inter-related subset of rules, and group B GPs receive support only for the remainder of the rules. For non-automatically verifiable rules, group A GPs receive feedback framed as actions with positive consequences, and group B GPs receive feedback framed as inaction with negative consequences. GPs indicate whether they adhere to non-automatically verifiable rules. In both trials, the main outcome measure is mean adherence, automatically derived or self-reported, to the rules. DISCUSSION: We relied on active end-user involvement in selecting the rules to support, and on a model for providing feedback displayed as color-coded real-time messages concerning the patient visiting the GP at that time, without interrupting the GP’s workflow with pop-ups. While these aspects are believed to increase clinical decision support system acceptance and its impact on adherence to the selected clinical rules, systems with these properties have not yet been evaluated. TRIAL REGISTRATION: Controlled Trials NTR3566