Cargando…
Discovering body site and severity modifiers in clinical texts
OBJECTIVE: To research computational methods for discovering body site and severity modifiers in clinical texts. METHODS: We cast the task of discovering body site and severity modifiers as a relation extraction problem in the context of a supervised machine learning framework. We utilize rich lingu...
Autores principales: | Dligach, Dmitriy, Bethard, Steven, Becker, Lee, Miller, Timothy, Savova, Guergana K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994852/ https://www.ncbi.nlm.nih.gov/pubmed/24091648 http://dx.doi.org/10.1136/amiajnl-2013-001766 |
Ejemplares similares
-
Towards comprehensive syntactic and semantic annotations of the clinical narrative
por: Albright, Daniel, et al.
Publicado: (2013) -
Evaluating the state of the art in disorder recognition and normalization of the clinical narrative
por: Pradhan, Sameer, et al.
Publicado: (2015) -
A common type system for clinical natural language processing
por: Wu, Stephen T, et al.
Publicado: (2013) -
Adverse drug event presentation and tracking (ADEPT): semiautomated, high throughput pharmacovigilance using real-world data
por: Geva, Alon, et al.
Publicado: (2020) -
Interactive Exploration of Longitudinal Cancer Patient Histories Extracted From Clinical Text
por: Yuan, Zhou, et al.
Publicado: (2020)