Cargando…
Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements
OBJECTIVE: To present a series of experiments: (1) to evaluate the impact of pre-annotation on the speed of manual annotation of clinical trial announcements; and (2) to test for potential bias, if pre-annotation is utilized. METHODS: To build the gold standard, 1400 clinical trial announcements fro...
Autores principales: | Lingren, Todd, Deleger, Louise, Molnar, Katalin, Zhai, Haijun, Meinzen-Derr, Jareen, Kaiser, Megan, Stoutenborough, Laura, Li, Qi, Solti, Imre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994857/ https://www.ncbi.nlm.nih.gov/pubmed/24001514 http://dx.doi.org/10.1136/amiajnl-2013-001837 |
Ejemplares similares
-
A sequence labeling approach to link medications and their attributes in clinical notes and clinical trial announcements for information extraction
por: Li, Qi, et al.
Publicado: (2013) -
Web 2.0-Based Crowdsourcing for High-Quality Gold Standard Development in Clinical Natural Language Processing
por: Zhai, Haijun, et al.
Publicado: (2013) -
Large-scale evaluation of automated clinical note de-identification and its impact on information extraction
por: Deleger, Louise, et al.
Publicado: (2013) -
Developing and evaluating an automated appendicitis risk stratification algorithm for pediatric patients in the emergency department
por: Deleger, Louise, et al.
Publicado: (2013) -
Mining FDA drug labels for medical conditions
por: Li, Qi, et al.
Publicado: (2013)