Cargando…

Sinc-Chebyshev Collocation Method for a Class of Fractional Diffusion-Wave Equations

This paper is devoted to investigating the numerical solution for a class of fractional diffusion-wave equations with a variable coefficient where the fractional derivatives are described in the Caputo sense. The approach is based on the collocation technique where the shifted Chebyshev polynomials...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Zhi, Xiao, Aiguo, Yu, Zuguo, Shi, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995151/
https://www.ncbi.nlm.nih.gov/pubmed/24977177
http://dx.doi.org/10.1155/2014/143983
Descripción
Sumario:This paper is devoted to investigating the numerical solution for a class of fractional diffusion-wave equations with a variable coefficient where the fractional derivatives are described in the Caputo sense. The approach is based on the collocation technique where the shifted Chebyshev polynomials in time and the sinc functions in space are utilized, respectively. The problem is reduced to the solution of a system of linear algebraic equations. Through the numerical example, the procedure is tested and the efficiency of the proposed method is confirmed.