Cargando…
Sinc-Chebyshev Collocation Method for a Class of Fractional Diffusion-Wave Equations
This paper is devoted to investigating the numerical solution for a class of fractional diffusion-wave equations with a variable coefficient where the fractional derivatives are described in the Caputo sense. The approach is based on the collocation technique where the shifted Chebyshev polynomials...
Autores principales: | Mao, Zhi, Xiao, Aiguo, Yu, Zuguo, Shi, Long |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995151/ https://www.ncbi.nlm.nih.gov/pubmed/24977177 http://dx.doi.org/10.1155/2014/143983 |
Ejemplares similares
-
A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations
por: Motsa, S. S., et al.
Publicado: (2014) -
Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix
por: Xie, Jiaquan, et al.
Publicado: (2016) -
A space–time spectral collocation algorithm for the variable order fractional wave equation
por: Bhrawy, A. H., et al.
Publicado: (2016) -
Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method
por: Bahşı, Ayşe Kurt, et al.
Publicado: (2016) -
Numerical computing approach for solving Hunter-Saxton equation arising in liquid crystal model through sinc collocation method
por: Ahmad, Iftikhar, et al.
Publicado: (2021)