Cargando…

Thyroid-Stimulating Hormone, White Matter Hyperintensities, and Functional Outcome in Acute Ischemic Stroke Patients

BACKGROUND: Thyroid-stimulating hormone (TSH) concentrations are frequently altered in acute ischemic stroke patients. It is becoming increasingly apparent that various hormones in the hypothalamus-pituitary-thyroid axis may be associated with functional stroke outcome. We have previously shown that...

Descripción completa

Detalles Bibliográficos
Autores principales: Leonards, Christopher O., Schneider, Harald J., Liman, Thomas G., Fiebach, Jochen B., Endres, Matthias, Ebinger, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: S. Karger AG 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995386/
https://www.ncbi.nlm.nih.gov/pubmed/24803914
http://dx.doi.org/10.1159/000360217
Descripción
Sumario:BACKGROUND: Thyroid-stimulating hormone (TSH) concentrations are frequently altered in acute ischemic stroke patients. It is becoming increasingly apparent that various hormones in the hypothalamus-pituitary-thyroid axis may be associated with functional stroke outcome. We have previously shown that white matter hyperintensities (WMH) of presumed vascular origin are strong indicators of functional outcome. It is unclear whether an association exists between WMH and TSH. We therefore sought to determine whether TSH levels, measured in acute ischemic stroke patients, are associated with WMH and functional outcome. METHODS: We analyzed all first ischemic stroke patients who participated in the Berlin ‘Cream & Sugar’ Study (NCT 01378468) and completed a 1-year follow-up assessment from January 2009 to March 2013. Patients were stratified into 3 groups: (1) low TSH (0.1-0.44 μU/ml); (2) normal TSH (0.44-2.5 μU/ml), and (3) high TSH (2.5-20 μU/ml). WMH were assessed using the Fazekas and Wahlund visual rating scales. Functional outcome was assessed using the modified Rankin Scale and was performed via telephone at 1 year by a certified rater. RESULTS: 183 patients were included [median age 66, interquartile range (IQR) 54-75; 33% females; median National Institute of Health Stroke Scale 3, IQR 1-4, range 0-24]. Venous samples were collected a median of 4 days (IQR 3-5) following initial symptom onset between 8 and 9 a.m. following a 10-hour fast. Patients with normal TSH levels (n = 132; 72%) had significantly higher rates of prestroke diabetes than patients with high TSH levels (normal TSH 17%; high TSH 1%; p = 0.03). Additionally, patients with normal TSH levels tended to have higher estimated glomerular filtration rates than patients with high and low TSH concentrations (normal TSH median estimated glomerular filtration rates: 83 ml/min/1.73 m(2); high TSH median estimated glomerular filtration rates: 76 ml/min/1.73 m(2); low TSH median: 78 ml/min/1.73 m(2); p = 0.068). Logistical regression analysis force-adjusted for age (quartiles), NIHSS (quartiles), prestroke diabetes status, and stroke subtype revealed significant associations between WMH and TSH [Wahlund scores: odds ratio 2.547, 95% confidence interval (CI) 1.159-5.598, p = 0.020; Fazekas scores: odds ratio 2.530, 95% CI 1.115-5.741, p = 0.003]. Functional outcome was not significantly associated with TSH levels in univariate or multivariate models. CONCLUSION: TSH levels are independently associated with WMH in acute ischemic stroke patients. Based on our findings, we cannot recommend assessing TSH to estimate the 1-year functional outcome following ischemic stroke.