Cargando…

Switching off photosynthesis: The dark side of sacoglossan slugs

Sometimes the elementary experiment can lead to the most surprising result. This was recently the case when we had to learn that so-called “photosynthetic slugs“ survive just fine in the dark and with chemically inhibited photosynthesis. Sacoglossan sea slugs feed on large siphonaceous, often single...

Descripción completa

Detalles Bibliográficos
Autores principales: Christa, Gregor, de Vries, Jan, Jahns, Peter, Gould, Sven B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995730/
https://www.ncbi.nlm.nih.gov/pubmed/24778762
http://dx.doi.org/10.4161/cib.28029
Descripción
Sumario:Sometimes the elementary experiment can lead to the most surprising result. This was recently the case when we had to learn that so-called “photosynthetic slugs“ survive just fine in the dark and with chemically inhibited photosynthesis. Sacoglossan sea slugs feed on large siphonaceous, often single-celled algae by ingesting their cytosolic content including the organelles. A few species of the sacoglossan clade fascinate researcher from many disciplines, as they can survive starvation periods of many months through the plastids they sequestered, but not immediately digested – a process known as kleptoplasty. Ever since the term “leaves that crawl“ was coined in the 1970s, the course was set in regard to how the subject was studied, but the topics of how slugs survive starvation and what for instance mediates kleptoplast longevity have often been conflated. It was generally assumed that slugs become photoautotrophic upon plastid sequestration, but most recent results challenge that view and the predominant role of the kleptoplasts in sacoglossan sea slugs.