Cargando…
The effect of bovine viral diarrhea virus (BVDV) strains on bovine monocyte-derived dendritic cells (Mo-DC) phenotype and capacity to produce BVDV
BACKGROUND: Dendritic cells (DC) are important antigen presentation cells that monitor, process, and present antigen to T cells. Viruses that infect DC can have a devastating impact on the immune system. In this study, the ability of bovine viral diarrhea virus (BVDV) to replicate and produce infect...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995919/ https://www.ncbi.nlm.nih.gov/pubmed/24607146 http://dx.doi.org/10.1186/1743-422X-11-44 |
Sumario: | BACKGROUND: Dendritic cells (DC) are important antigen presentation cells that monitor, process, and present antigen to T cells. Viruses that infect DC can have a devastating impact on the immune system. In this study, the ability of bovine viral diarrhea virus (BVDV) to replicate and produce infectious virus in monocyte-derived dendritic cells (Mo-DC) and monocytes was studied. The study also examined the effect of BVDV infection on Mo-DC expression of cell surface markers, including MHCI, MHCII, and CD86, which are critical for DC function in immune response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from bovine blood through gradient centrifugation. The adherent monocytes were isolated from PBMCs and differentiated into Mo-DC using bovine recombinant interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GMCSF). To determine the effect of BVDV on Mo-DC, four strains of BVDV were used including the severe acute non-cytopathic (ncp) BVDV2a-1373; moderate acute ncp BVDV2a 28508-5; and a homologous virus pair [i.e., cytopathic (cp) BVDV1b TGAC and ncp BVDV1b TGAN]. The Cooper strain of bovine herpesvirus 1 (BHV1) was used as the control virus. Mo-DC were infected with one of the BVDV strains or BHV-1 and were subsequently examined for virus replication, virus production, and the effect on MHCI, MHCII, and CD86 expression. RESULTS: The ability of monocytes to produce infectious virus reduced as monocytes differentiated to Mo-DC, and was completely lost at 120 hours of maturation. Interestingly, viral RNA increased throughout the course of infection in Mo-DC, and the viral non-structural (NS5A) and envelope (E2) proteins were expressed. The ncp strains of BVDV down-regulated while cp strain up-regulated the expression of the MHCI, MHCII, and CD86 on Mo-DC. CONCLUSIONS: The study revealed that the ability of Mo-DC to produce infectious virus was reduced with its differentiation from monocytes to Mo-DC. The inability to produce infectious virus may be due to a hindrance of virus packaging or release mechanisms. Additionally, the study demonstrated that ncp BVDV down-regulated and cp BVDV up-regulated the expression of Mo-DC cell surface markers MHCI, MHCII, and CD86, which are important in the mounting of immune responses. |
---|