Cargando…
Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation
BACKGROUND: Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphona...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996180/ https://www.ncbi.nlm.nih.gov/pubmed/24490900 http://dx.doi.org/10.1186/1423-0127-21-10 |
_version_ | 1782313005672824832 |
---|---|
author | Tsubaki, Masanobu Komai, Makiko Itoh, Tatsuki Imano, Motohiro Sakamoto, Kotaro Shimaoka, Hirotaka Takeda, Tomoya Ogawa, Naoki Mashimo, Kenji Fujiwara, Daiichiro Mukai, Junji Sakaguchi, Katsuhiko Satou, Takao Nishida, Shozo |
author_facet | Tsubaki, Masanobu Komai, Makiko Itoh, Tatsuki Imano, Motohiro Sakamoto, Kotaro Shimaoka, Hirotaka Takeda, Tomoya Ogawa, Naoki Mashimo, Kenji Fujiwara, Daiichiro Mukai, Junji Sakaguchi, Katsuhiko Satou, Takao Nishida, Shozo |
author_sort | Tsubaki, Masanobu |
collection | PubMed |
description | BACKGROUND: Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7. RESULTS: It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation. CONCLUSIONS: This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis. |
format | Online Article Text |
id | pubmed-3996180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39961802014-04-24 Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation Tsubaki, Masanobu Komai, Makiko Itoh, Tatsuki Imano, Motohiro Sakamoto, Kotaro Shimaoka, Hirotaka Takeda, Tomoya Ogawa, Naoki Mashimo, Kenji Fujiwara, Daiichiro Mukai, Junji Sakaguchi, Katsuhiko Satou, Takao Nishida, Shozo J Biomed Sci Research BACKGROUND: Bisphosphonates are an important class of antiresorptive drugs used in the treatment of metabolic bone diseases. Recent studies have shown that nitrogen-containing bisphosphonates induced apoptosis in rabbit osteoclasts and prevented prenylated small GTPase. However, whether bisphosphonates inhibit osteoclast formation has not been determined. In the present study, we investigated the inhibitory effect of minodronate and alendronate on the osteoclast formation and clarified the mechanism involved in a mouse macrophage-like cell lines C7 and RAW264.7. RESULTS: It was found that minodronate and alendronate inhibited the osteoclast formation of C7 cells induced by receptor activator of NF-κB ligand and macrophage colony stimulating factor, which are inhibited by the suppression of geranylgeranyl pyrophosphate (GGPP) biosynthesis. It was also found that minodronate and alendronate inhibited the osteoclast formation of RAW264.7 cells induced by receptor activator of NF-κB ligand. Furthermore, minodronate and alendornate decreased phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; similarly, U0126, a mitogen protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited osteoclast formation. CONCLUSIONS: This indicates that minodronate and alendronate inhibit GGPP biosynthesis in the mevalonate pathway and then signal transduction in the MEK/ERK and PI3K/Akt pathways, thereby inhibiting osteoclast formation. These results suggest a novel effect of bisphosphonates that could be effective in the treatment of bone metabolic diseases, such as osteoporosis. BioMed Central 2014-02-03 /pmc/articles/PMC3996180/ /pubmed/24490900 http://dx.doi.org/10.1186/1423-0127-21-10 Text en Copyright © 2014 Tsubaki et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Tsubaki, Masanobu Komai, Makiko Itoh, Tatsuki Imano, Motohiro Sakamoto, Kotaro Shimaoka, Hirotaka Takeda, Tomoya Ogawa, Naoki Mashimo, Kenji Fujiwara, Daiichiro Mukai, Junji Sakaguchi, Katsuhiko Satou, Takao Nishida, Shozo Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation |
title | Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation |
title_full | Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation |
title_fullStr | Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation |
title_full_unstemmed | Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation |
title_short | Nitrogen-containing bisphosphonates inhibit RANKL- and M-CSF-induced osteoclast formation through the inhibition of ERK1/2 and Akt activation |
title_sort | nitrogen-containing bisphosphonates inhibit rankl- and m-csf-induced osteoclast formation through the inhibition of erk1/2 and akt activation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996180/ https://www.ncbi.nlm.nih.gov/pubmed/24490900 http://dx.doi.org/10.1186/1423-0127-21-10 |
work_keys_str_mv | AT tsubakimasanobu nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT komaimakiko nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT itohtatsuki nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT imanomotohiro nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT sakamotokotaro nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT shimaokahirotaka nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT takedatomoya nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT ogawanaoki nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT mashimokenji nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT fujiwaradaiichiro nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT mukaijunji nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT sakaguchikatsuhiko nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT satoutakao nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation AT nishidashozo nitrogencontainingbisphosphonatesinhibitranklandmcsfinducedosteoclastformationthroughtheinhibitionoferk12andaktactivation |