Cargando…
A Novel Bioinformatics Method for Efficient Knowledge Discovery by BLSOM from Big Genomic Sequence Data
With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map...
Autores principales: | Bai, Yu, Iwasaki, Yuki, Kanaya, Shigehiko, Zhao, Yue, Ikemura, Toshimichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996302/ https://www.ncbi.nlm.nih.gov/pubmed/24804244 http://dx.doi.org/10.1155/2014/765648 |
Ejemplares similares
-
A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM)
por: Iwasaki, Yuki, et al.
Publicado: (2013) -
Development of Self-Compressing BLSOM for Comprehensive Analysis of Big Sequence Data
por: Kikuchi, Akihito, et al.
Publicado: (2015) -
Directional and reoccurring sequence change in zoonotic RNA virus genomes visualized by time-series word count
por: Wada, Yoshiko, et al.
Publicado: (2016) -
A Novel Bioinformatics Strategy for Function Prediction of Poorly-Characterized Protein Genes Obtained from Metagenome Analyses
por: Abe, Takashi, et al.
Publicado: (2009) -
Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains
por: Iwasaki, Yuki, et al.
Publicado: (2013)