Cargando…

Nanocrystalline, Ultra-Degradation-Resistant Zirconia: Its Grain Boundary Nanostructure and Nanochemistry

Y(2)O(3)-stabilized tetragonal ZrO(2) polycrystal (Y-TZP) has been known to be an excellent structural material with high strength and toughness since the pioneering study by Garvie et al. in 1975. However, Y-TZP is not considered an environmental or biomedical material because it undergoes an inher...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsui, Koji, Yoshida, Hidehiro, Ikuhara, Yuichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996460/
https://www.ncbi.nlm.nih.gov/pubmed/24755733
http://dx.doi.org/10.1038/srep04758
Descripción
Sumario:Y(2)O(3)-stabilized tetragonal ZrO(2) polycrystal (Y-TZP) has been known to be an excellent structural material with high strength and toughness since the pioneering study by Garvie et al. in 1975. However, Y-TZP is not considered an environmental or biomedical material because it undergoes an inherent tetragonal-to-monoclinic (T→M) phase transformation in humid or aqueous environment, which leads to premature failure, so-called low-temperature degradation (LTD). In this study, we demonstrate for the first time that this fatal shortcoming of Y-TZP can be resolved by controlling the grain boundary nanostructure and chemical composition distribution in Y-TZP. Nanocrystalline Y-TZP doped with Al(3+) and Ge(4+) ions exhibits no LTD for more than 4 years in hot water at 140°C, whereas 70% of the tetragonal phase in conventional TZP transforms to the monoclinic phase within only 15 h. This innovative Y-TZP can be fabricated by pressureless sintering at 1200°C; far below the sintering temperature for conventional Y-TZP. The developed TZP ceramics will be useful in numerous environmental-proofing applications, particularly in the biomedical engineering field.