Cargando…
Nanocrystalline, Ultra-Degradation-Resistant Zirconia: Its Grain Boundary Nanostructure and Nanochemistry
Y(2)O(3)-stabilized tetragonal ZrO(2) polycrystal (Y-TZP) has been known to be an excellent structural material with high strength and toughness since the pioneering study by Garvie et al. in 1975. However, Y-TZP is not considered an environmental or biomedical material because it undergoes an inher...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996460/ https://www.ncbi.nlm.nih.gov/pubmed/24755733 http://dx.doi.org/10.1038/srep04758 |
Sumario: | Y(2)O(3)-stabilized tetragonal ZrO(2) polycrystal (Y-TZP) has been known to be an excellent structural material with high strength and toughness since the pioneering study by Garvie et al. in 1975. However, Y-TZP is not considered an environmental or biomedical material because it undergoes an inherent tetragonal-to-monoclinic (T→M) phase transformation in humid or aqueous environment, which leads to premature failure, so-called low-temperature degradation (LTD). In this study, we demonstrate for the first time that this fatal shortcoming of Y-TZP can be resolved by controlling the grain boundary nanostructure and chemical composition distribution in Y-TZP. Nanocrystalline Y-TZP doped with Al(3+) and Ge(4+) ions exhibits no LTD for more than 4 years in hot water at 140°C, whereas 70% of the tetragonal phase in conventional TZP transforms to the monoclinic phase within only 15 h. This innovative Y-TZP can be fabricated by pressureless sintering at 1200°C; far below the sintering temperature for conventional Y-TZP. The developed TZP ceramics will be useful in numerous environmental-proofing applications, particularly in the biomedical engineering field. |
---|