Cargando…
Enabling an Integrated Rate-temporal Learning Scheme on Memristor
Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. How...
Autores principales: | He, Wei, Huang, Kejie, Ning, Ning, Ramanathan, Kiruthika, Li, Guoqi, Jiang, Yu, Sze, JiaYin, Shi, Luping, Zhao, Rong, Pei, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996481/ https://www.ncbi.nlm.nih.gov/pubmed/24755608 http://dx.doi.org/10.1038/srep04755 |
Ejemplares similares
-
Memory Dynamics in Attractor Networks
por: Li, Guoqi, et al.
Publicado: (2015) -
ROA: A Rapid Learning Scheme for In-Situ Memristor Networks
por: Zhang, Wenli, et al.
Publicado: (2021) -
Spontaneous sparse learning for PCM-based memristor neural networks
por: Lim, Dong-Hyeok, et al.
Publicado: (2021) -
Design of the Threshold-Controllable Memristor Emulator Based on NDR Characteristics
por: Lin, Mi, et al.
Publicado: (2022) -
Reservoir computing using dynamic memristors for temporal information processing
por: Du, Chao, et al.
Publicado: (2017)